Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:32:52.247Z Has data issue: false hasContentIssue false

Ultra Low-dielectric-constant Materials for 65nm Technology Nodeand Beyond

Published online by Cambridge University Press:  17 March 2011

Get access

Abstract

Pore characteristics including pore size distribution, porosity, and poreinterconnectivity of PECVD SiCOH inter- layer dielectric (ILD) materialswith different dielectric constant (κ) values have been studied. Oxygenplasma damage to SiCOH low-κ films increases dramatically as the κ valuedecreases. Simulations showed that, compared to the ILD film, the overheaddielectric films have a significant impact on the overall effective κ (κeff) of the BEOL interconnects. Reducing the κ values ofthese overhead films helps to alleviate the pressure on the κ valuerequirement of the ILD materials while still meeting the κeff target. Ultralow-κ (ULK) PECVD hydrogenated silicon carbide (H:SiC) films with a κ of 3.0have been studied for the etch-stop applications. Studies of the chemicalcomposition and bonding structure suggest that less Si-C networκs are formedand more micro-porosity are incorporated in the ULK H:SiC film. The leakagecurrent of the ULK H:SiC film is found to be about 5 times lower than theH:S iC and H:SiCN films with higher κ values. The etch rate of ULK H:SiCfilm using a standard SiCOH ILD etch chemistry has been found to benegligible. Such an extremely high etch selectivity maκes these films verygood etch-stop layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.International Technology Roadmap for Semiconductor-Interconnects: 1999, 2001 and 2003.Google Scholar
2.Grill, A., Patel, V., Rodbell, K., Huang, E., Baklanov, M., Mogilnikov, K., Toney, M., and Kim, K., J. Appl. Phys., 94, 3427 (2003)Google Scholar
3.Maex, K., Baklanov, M., Shamiryan, D., Iacopi, F., Brongersma, S., and Yanovitskaya, Z., J. Appl. Phys., 93, 8793 (2003)Google Scholar
4.Lu, H., Cui, H., Bhat, I., Murarka, S., Lanford, W., Hsia, W., and Li, W., J. Vac. Sci. Technol. B, 20, 828 (2002)Google Scholar
5.Aoi, N., Fukuda, T., and Yanazawa, H., Proceedings of IITC, 72, (2002)Google Scholar
6.Kondoh, E., Asano, T., Nakashima, A., and Komatsu, M., J. Vac. Sci. Technol. B 18, 1276 (2000)Google Scholar
7.Besling, W., Satta, A., Schuhmacher, J., Abell, T., Sutcliffe, V., Hoyas, a., Beyer, G., Gravesteijn, D., and Maex, K., Proceedings of IITC, 288 (2002)Google Scholar
8.Gidley, D., Frieze, W., Dull, T., Yee, A., Ryan, E., and Ho, H., Phys. Rev. B 60, R5157 (1999)Google Scholar
9.Baklaonv, M., Mogilnikov, K., Polovinkin, V., and Dultsev, F., J. Vac. Sci. Technol. B 18, 1385 (2000)CrossRefGoogle Scholar
10.Zarkesh-Ha, P., Burke, P., Doniger, K., Loh, W., Sukharev, V., Lu, M., Bendix, P., Catabay, W., Hisa, W., Chang, C-H., Proceedings of VMIC, 17 (2003)Google Scholar
11.Davis, J., De, V., and Meindl, J., IEEE Transaction on Electron Devices, 580 (1998)Google Scholar
12.Davis, J., De, V., and Meindl, J., IEEE Transaction on Electron Devices, 590 (1998)Google Scholar
13.Enz, C., Kerummenacher, F., and Vittoz, E., Analog Integrated Circuits and Signal Processing, (83) 1995Google Scholar
14.Loboda, M., Microelectronic Engineering, 50, 15 (1997)Google Scholar
15.Lee, S. G., Kim, Y., Lee, S. P., Oh, H., Lee, S. J., Kim, M., Kim, I., Kim, J., Shin, H., Hong, J., Lee, H., and Kang, H., Jap. J. Appl. Phys., 40, 2663 (2001)CrossRefGoogle Scholar