Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:29:39.151Z Has data issue: false hasContentIssue false

Two-Step Growth of Gan Quantum Dots with Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

P. Chen
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
B. Shen
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
R. Zhang
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
M. Wang
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
Y. G. Zhou
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
Z. Z. Chen
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
L. Zhang
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
Y. D. Zheng
Affiliation:
Department of Physics and Solid Microstructures Lab, Nanjing University, Nanjing 210093, P.R. China
Get access

Abstract

Nanometer-scale GaN dots were successfully fabricated on sapphire using metalorganic chemical vapor deposition(MOCVD) by two-step method, including depositing around 500 IC and annealing at 1050 °C. The density of GaN dots is from 5×108cm−2 to 6×109 cm−2, and the size is around 40nm in diameter. The density and size of GaN dots are determined by an atomic force microscope(AFM), and they are controllable by changing temperature and duration of the growing. GaN dots only formed after annealing at high temperature, which is explained that the initial layer deposited around 500 °C is a high energy intermediate phase in which the large strain energy can not be relaxed because of the low temperature growing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Satoru, Tanaka, Sohachi, Iwai and Yoshinobu, Aoyagi, Appl.Phys.Lett. 69, 4096 (1996).Google Scholar
2. Goodwin, T. J., Leppert, V. J., Smith, O.A. and Risbud, S. H., Niemeyer, M. and Power, P. P., Lee, H. W. H. and Hrubesh, L. W., Appl.Phys.Lett. 69, 3230 (1996).Google Scholar
3. Nakamura, S., senoh, M., Nagahara, S., Iwasa, N., Yamada, T., Matsuahita, T., Kiyoku, H. and Sugimoto, Y., Jpn.J.Appl.Phys. 1135, L74 (1996).Google Scholar
4. Nakamura, S., senoh, M., Nagahara, S., Iwasa, N., Yamada, T., Matsuahita, T., Kiyoku, H. and Sugimoto, Y., Appl.Phys.Lett. 68, 2105 (1996).Google Scholar
5. Stranski, I. N. and Krastanow, V. L., Akad.Wiss.Lit.Mainz, Math.Naturewiss.Karl-August- Forster Lect. 146, 797 (1939).Google Scholar
6. Oshinowo, J., Nishioka, M., Ishida, S. and Arakawa, Y., Appl.Phys.Lett. 65, 1421 (1994).Google Scholar
7. Leonard, D., Kishnamurthy, M., Reaves, C. M., Denbarrs, S. P. and Petroff, P. M., Appl.Phys.Lett. 63, 3203 (1993).Google Scholar
8. Sopanen, M., Lipsanen, H. and Ahopelto, J., Appl.Phys.Lett. 67, 3768 (1995).Google Scholar
9. Eagiesham, D. J. and Cerullo, M., Phys.Rev.Lett. 64, 1943 (1990)Google Scholar
10. Mo, Y. W., Savage, D. E., Swartzentruber, B. S. and Lagally, M. G., Phys.Rev.Lett. 65, 1020 (1990).Google Scholar
11. Verhoeven, D., Fundamentals of Physical Metallurgy (Wily, New York, 1975), p.377; J.W.Christian, The Theory of Transformations in Metals (Pergamon, New York, 1965).Google Scholar
12. People, R., Bean, J. C., Lang, D. V., Sergent, A. M., stormer, H. L., Wecht, K. W., Lynch, R. T. and Baldwin, K., Appl.Phys.Lett. 54, 1892 (1983).Google Scholar
13. Peassall, T. P., Temkin, H., Feidman, J. C., Bonar, J. M., Mannaerts, J. P. and Ourmazd, A., Phys.Rev.Lett. 58, 729 (1987).Google Scholar