Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:48:25.187Z Has data issue: false hasContentIssue false

Two-Dimensional Protein Crystals (S-Layers): Fundamentals and Application Potential

Published online by Cambridge University Press:  15 February 2011

Uwe B. Sleytr
Affiliation:
Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, Universität für Bodenkultur, Gregor Mendel Str. 33, A-I 180 Vienna, Austria
M. Sara
Affiliation:
Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, Universität für Bodenkultur, Gregor Mendel Str. 33, A-I 180 Vienna, Austria
D. Pum
Affiliation:
Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, Universität für Bodenkultur, Gregor Mendel Str. 33, A-I 180 Vienna, Austria
S. Küpcü
Affiliation:
Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, Universität für Bodenkultur, Gregor Mendel Str. 33, A-I 180 Vienna, Austria
P. Messner
Affiliation:
Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, Universität für Bodenkultur, Gregor Mendel Str. 33, A-I 180 Vienna, Austria
Get access

Abstract

Crystalline cell surface layers (S-layers) represent the outermost cell envelope component in many bacteria. The oblique, square or hexagonal lattices are formed of assemblies of a single protein or glycoprotein species. Isolated S-layer subunits are endowed with the ability to assemble into monomolecular arrays in suspension, on solid surfaces (e.g. metals, polymers, glass, carbon, silicon), at the air/water interface, or on lipid films generated by the Langmuir Blodgett technique. S-layer lattices are isoporous structures with functional groups located on the surface and in the pores in an identical position and orientation. These characteristic features have led to applications of S-layers as (i) ultrafiltration membranes with pores of identical size and morphology and a broad chemical modification potential, (ii) matrices for the controlled and reproducible immobilization of functional macromolecules, as required for affinity and enzyme membranes, affinity microcarriers and biosensors, (iii) carriers for Langmuir-Blodgett films and reconstituted biological membranes, (iv) immobilization matrices and adjuvants for weakly immunogenic antigens and haptens and (v) patterning elements in molecular nanotechnology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Messner, P. and Sleytr, U.B., in Advances in Microbial Physiology, Vol.33, edited by Rose, A.H. (Academic Press, London, 1992), p. 213.Google Scholar
2. Sleytr, U.B. and Messner, P., in Encyclopedia of Microbiology, Vol.1, edited by Lederberg, J. (Academic Press, San Diego, 1992), p. 605.Google Scholar
3. Sleytr, U.B., Messner, P., Pum, D., Sára, M., Molec. Microbiol. (in press).Google Scholar
4. Baumeister, W., Wildhaber, I., Engelhardt, H., Biophys. Chem. 29, 39 (1988).Google Scholar
5. Beveridge, T.J., Int. Rev. Cytol. 72, 229 (1981).Google Scholar
6. Beveridge, T.J. and Graham, L.L., Microbiol. Rev. 55, 684 (1991).Google Scholar
7. Koval, S.F., Can. J. Microbiol. 34, 407 (1988).Google Scholar
8. Smit, J., in Bacterial Outer Membranes as Model Systems, edited by Inouye, M. (John Wiley & Sons, New York, 1987), p. 343.Google Scholar
9. Hovmöller, S., Sjögren, A., Wang, D.N., Progr. Biophys. Molec. Biol. 51, 131 (1988).Google Scholar
10. Sára, M. and Sleytr, U.B., J. Bacteriol. 169, 2804 (1987).Google Scholar
11. Sára, M., Pum, D., Sleytr, U.B., J. Bacteriol. 174, 3487 (1992).Google Scholar
12. Messner, P. and Sleytr, U.B., Glycobiology 1, 545 (1991).Google Scholar
13. Sleytr, U.B. and Messner, P., in Electron Microscopy of Subcellular Dynamics, edited by Plattner, H. (CRC Press, Boca Raton, 1989), p. 13.Google Scholar
14. Sleytr, U.B., Nature 257, 400 (1975).Google Scholar
15. Pumr, D. and Sleytr, U.B., Thin Solid Films (in press).Google Scholar
16. Sleytr, U.B., Messner, P., Pum, D., Sára, M., J. Appl. Bacteriol. 74, 21S (1993).Google Scholar
17. Sleytr, U.B., Sára, M., Messner, P., Pum, D., J. Cell. Biochem. (in press).Google Scholar
18. Sleytr, U.B. and Sára, M., U.S. Patent No. 4 752 395 (1988).Google Scholar
19. Sleytr, U.B. and Sára, M., U.S. Patent No. 4 886 604 (1989).Google Scholar
20. Sára, M. and Sleytr, U.B., in Membrane Biotechnology, Vol.6b, edited by Rehm, H.-J. (VCH, Weinheim, 1988), p. 615.Google Scholar
21. Sára, M., Sleytr, U.B., J. Membr. Sci. 33, 27 (1987).Google Scholar
22. Küpcö, S., Sára, M., Sleytr, U.B., J. Membr. Sci. 61, 167 (1991).Google Scholar
23. Küpcü, S., Sára, M., Sleytr, U.B., Desalination 90, 65 (1993).Google Scholar
24. Weiner, C., Sára, M., Sleytr, U.B., Biotechnol. Bioeng. (in press).Google Scholar
25. Weiner, C., Sára, M., Sleytr, U.B., Biotechnol. Bioeng. (in press).Google Scholar
26. Neubauer, A., Pum, D., Sleytr, U.B., Anal. Lett. 26, 1347 (1993).Google Scholar
27. Neubauer, A., Hödl, C., Pum, D., Sleytr, U.B., Anal. Lett. (in press).Google Scholar
28. Taga, K., Kellner, R., Kainz, U., Sleytr, U.B., Anal. Chem. (in press).Google Scholar
29. Purm, D., Sára, M., Sleytr, U.B., in Immobilised Macromolecules: Application Potentials, edited by Sleytr, U.B., Messner, P., Pum, D., and Sára, M. (Springer-Verlag, London, 1993), p. 141.Google Scholar
30. Sleytr, U.B., Mundt, W., Messner, P., Smith, R.H., Unger, F.M., U.S. Patent No. 5 043 158 (1991).Google Scholar
31. Messner, P., Mazid, M.A., Unger, F.M., Sleytr, U.B., Carbohydr. Res. 233, 175 (1992).Google Scholar
32. Malcolm, A.J., Messner, P., Sleytr, U.B., Smith, R.H., Unger, F.M., in Immobilised Macromolecules: Application Potentials, edited by Sleytr, U.B., Messner, P., Pum, D., and Sára, M. (Springer-Verlag, London, 1993), p. 195.Google Scholar
33. Smith, R.H., Messner, P., Lamontagne, L.R., Sleytr, U.B., Unger, F.M., Vaccine 11, 919 (1993).Google Scholar
34. Pum, D., Weinhandl, M., Hödl, C., Sleytr, U.B., J. Bacteriol. 175, 2762 (1993).Google Scholar
35. Purm, D. and Sleytr, U.B., in Advances in Bacterial Paracrystalline Surface Layers, edited by Beveridge, T.J. and Koval, S.F. (Plenum Publishing Corp., New York, 1993), p. 205.Google Scholar
36. Pum, D., Sára, M., Messner, P., Sleytr, U.B., Nanotechnology 2, 196 (1991).Google Scholar