Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:51:55.379Z Has data issue: false hasContentIssue false

Two- and Three-Dimensional Ultrananocrystalline Diamond (UNCD) Structures for a High Resolution Diamond-Based MEMS Technology

Published online by Cambridge University Press:  10 February 2011

O. Auciello
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
A.R. Krauss
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
D.M. Gruen
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
E.M. Meyer
Affiliation:
Institute for Microsensors, Actuators, and Systems (IMSAS), University of Bremen, Bremen
H.G. Busmann
Affiliation:
Fraunhofer Institute for Applied Materials Science, (IFAM), Bremen
J. Tucek
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
A. Sumant
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
A. Jayatissa
Affiliation:
Argonne National Laboratory, Materials Science and Chemistry Divisions, Argonne, IL 60439
N. Moldovan
Affiliation:
Experimental Facilities Division, Argonne National Laboratory, Argonne, Illinois 60439
D. C. Mancini
Affiliation:
Experimental Facilities Division, Argonne National Laboratory, Argonne, Illinois 60439
M. N. Gardos
Affiliation:
M. N. Gardos, Raytheon Electronic Systems, 2000 El Segundo, CA 90245
Get access

Abstract

Silicon is currently the most commonly used material for the fabrication of microelectromechanical systems (MEMS). However, silicon-based MEMS will not be suitable for long-endurance devices involving components rotating at high speed, where friction and wear need to be minimized, components such as 2-D cantilevers that may be subjected to very large flexural displacements, where stiction is a problem, or components that will be exposed to corrosive environments. The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of long-endurance MEMS components. Cost-effective fabrication of these components could in principle be achieved by coating Si with diamond films and using conventional lithographic patterning methods in conjunction with e. g. sacrificial Ti or SiO2 layers. However, diamond coatings grown by conventional chemical vapor deposition (CVD) methods exhibit a coarse-grained structure that prevents high-resolution patterning, or a fine-grained microstructure with a significant amount of intergranular non-diamond carbon. We demonstrate here the fabrication of 2-D and 3-D phase-pure ultrananocrystalline diamond (UNCD) MEMS components by coating Si with UNCD films, coupled with lithographic patterning methods involving sacrificial release layers. UNCD films are grown by microwave plasma CVD using C60-Ar or CH4-Ar gas mixtures, which result in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, are extremely resistant to corrosive environments, and are predicted to have a brittle fracture strength similar to that of single crystal diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, A.P., Pisano, A.P., and Lim, M.G., Mat. Res. Soc. Symp. Proc. Vol. 276, 67 (1992).Google Scholar
2. Gabriel, K.J., Behi, F., Mahadevan, R., and Mehregany, M.; Sensors and Actuators A21-A23, 184 (1990).Google Scholar
3. Neuberger, M., Mat. Res.Bull. vol 4, 365 (1969).Google Scholar
4. Spearing, S.M. and Chen, K.S., in “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p. 95.Google Scholar
5. Rymuza, Z., Kusznierewicz, Z., Misiak, M., Schmidt-Szalowski, K., Rzanek-Boroch, Z., and Sentek, J., “Tribology Issues and Opportunities in MEMS”, edited by Bhushan, B., Kluwer Academic Publisher, The Netherlands (1998) p 579.Google Scholar
6. Gardos, M.N., Tribol. Trans. 31, 427(1988); Tribol. Trans. 32, 30 (1989).Google Scholar
7. Gardos, M.N., Hong, H.S. and Winer, W.O.; Tribol. Trans. 32, 209 (1990).Google Scholar
8. Gardos, M.N. (private communication, 1999).Google Scholar
9. Gardos, M. N. in Tribology Issues and Opportunities in MEMS, p. 341, Bhushan, B. ed., Kluwer, 1998; Surface and Coatings Technology 113, 183 (1999).Google Scholar
10. Davidson, J.L., Ramesham, R., and Ellis, C., J. Electrochem. Soc. 137, 3206 (1990).Google Scholar
11. Aslam, M., Yang, G.S., and Masood, A., Sensors and Actuators A 45, 131 (1994).10.1016/0924-4247(94)00830-2Google Scholar
12. Wur, D.R., Davidson, J.L., Kang, W.P., and Kinser, D.L., J. Micromech. Syst. 4, 34 (1995).Google Scholar
13. Dorsch, O., Holzner, K., Werner, M., Obermeir, E., Harper, R.E., Johnston, C., Chalker, P.R., and Buckley-Golder, I.M., Diamond Relat. Mater. 2, 1096 (1993).10.1016/0925-9635(93)90279-BGoogle Scholar
14. Zaho, G., Charlson, E.M., Charlson, E.J., Stacey, T., Meese, J., Popovici, G., and Prelas, M. G., J. Appl. Phys. 73, 1832 (1993).Google Scholar
15. Moller, S., Obermeir, E., and Lin, J., Sensor and Actuators B: Chemical 25, 343 (1995).10.1016/0925-4005(95)85077-5Google Scholar
16. Davidson, J.L. and Wang, W.P., Mater. Res. Soc Symp. Proc. 416, 397 (1996).10.1557/PROC-416-397Google Scholar
17. Yang, G.S. and Aslam, D.M., IEEE Electron. Dev. Lett. 17, 250 (1996).Google Scholar
18. Harris, S. J. and Goodwin, D. G., J. Phys. Chem 97, 23 (1993).Google Scholar
19. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).Google Scholar
20. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X., J. Appl. Phys. 75, 1758 (1994). R. Csencsits, D. M. Gruen, A. R. Krauss and C. Zuiker, Mat. Res. Soc. Symp. Proc. 403, 291 (1996).Google Scholar
21. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D., and Krauss, A. R., J. Phys. D: App. Phys. 31, 19751986 (1998).Google Scholar
22. Redfern, P. C., Horner, D. A., Curtiss, L. A. and Gruen, D. M., J. Phys. Chem. 100, 11654 (1996).10.1021/jp953165gGoogle Scholar
23. Gruen, D. M., Zuiker, C. D., Krauss, A. R., and Pan, X., J. Vac. Sci. Technol. A 13, 1628 (1995).10.1116/1.579742Google Scholar
24. Nuth, J. A., Nature, 329, 589 (1987).10.1038/329589b0Google Scholar
25. Zuiker, C. D., Krauss, A. R., Gruen, D. M., Carlisle, J. A., Terminello, L. J., Asher, S. A., and Bormett, R. W.. Mat. Res. Soc. Proc. 437, 211 (1996).Google Scholar
26. Csencsits, R., Zuiker, C. D., Gruen, D. M., Krauss, A. R., Solid State Phenom. 51–52, 261(1996).10.4028/www.scientific.net/SSP.51-52.261Google Scholar
27. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J. and Pan, X., Appl. Phys. Lett. 64, 1502 (1994)Google Scholar
28. Erdemir, A., Bindal, C., Fenske, G. R., Zuiker, C., Cesncsits, R., Krauss, A. R. and Gruen, D. M., Diamond Films and Technology 6, 31 (1996).Google Scholar
29. Auciello, O., Krauss, A.R., Gruen, D.M., Meyer, E.M., Busmann, H.G., Tucek, J., Sumant, A., Jayatissa, A., Ding, M. Q., Moldovan, N., Mancini, D. C., and Gardos, M. N., Jour. of Microelectromechanical Systems (in press, 1999).Google Scholar