Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:48:22.292Z Has data issue: false hasContentIssue false

Tunnel-Coupled Quantum Dots: Atomistic Theory of Quantum Dot Molecules and Arrays

Published online by Cambridge University Press:  11 February 2011

Garnett W. Bryant
Affiliation:
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899–8423
Javier Aizpurua
Affiliation:
Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899–8423
W. Jaskolski
Affiliation:
Instytut Fizyki, UMK, Grudziadzka 5, 87–100 Torun, Poland
Michal Zielinski
Affiliation:
Instytut Fizyki, UMK, Grudziadzka 5, 87–100 Torun, Poland
Get access

Abstract

An understanding of how dots couple in quantum dot molecules and arrays is needed so that the possibilities for tailored nanooptics in these systems can be explored. The properties of tunnel-coupled dots will be determined by how the dots couple through atomic-scale junctions. We present an atomistic empirical tight-binding theory of coupled, CdS nanocrystal artificial-molecules, vertically and laterally coupled InAs/GaAs self-assembled dots, and arrays of InAs/GaAs self-assembled dots. Electron states follow the artificial molecule analogy. The coupling of hole states is much more complex. There are significant departures from the artificial molecule analogy because the interdot hole coupling is determined by the hole envelope functions, as for the electron states, and by the hole atomic state near interdot interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Solomon, G. S., Tressa, J. A., Marshall, A. F., and Harris, J. S. Jr, Phys. Rev. Lett. 76, 952 (1996).Google Scholar
Grandidier, B., Niquet, Y. M., Legrand, B., Nys, J. P., Priester, C., Stievenard, D., Gerard, J. M., and Thierry-Mieg, V., Phys. Rev. Lett. 85, 1068 (2000).Google Scholar
3. Williams, R. L., Aers, G. C., Poole, P. J., Lefebvre, J., Chithrani, D., and Lamontagne, B., J. Crystal Growth, 223, 321 (2001).Google Scholar
4. Kagan, C. R., Murray, C. B., Nirmal, M., and Bawendi, M. G., Phys. Rev. Lett. 76, 1517 (1996).Google Scholar
5. Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., Gaponenko, S. V., and Woggon, U., Phys. Rev. B 60, 1504 (1999).Google Scholar
6. Lippens, P. E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
7. Leung, K. and Whaley, K. B., Phys. Rev. B 56, 7455 (1997).Google Scholar
8. Leung, K., Pokrant, S., and Whaley, K. B., Phys. Rev. B 5, 12291 (1998).Google Scholar
9. Bryant, G. W. and Jaskolski, W., Phys. St. Sol. B 224, 751 (2001).Google Scholar
10. Bryant, G. W. and Jaskolski, W., Physica E 11, 72 (2001).Google Scholar
11. Bryant, G. W. and Jaskolski, W., Physica E 13, 293 (2002).Google Scholar
12. Bryant, G. W., Physica B 314, 15 (2002).Google Scholar
13. Vogl, P., Hjalmarson, H. P., and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
14. Frage, S. and Muszynska, J., Atoms in External Fields, (Elsevier, New York 1981).Google Scholar
15. Hu, J., Li, L.S., Yang, W., Manna, L., Wang, L.-W., and Alivisatos, A. P., Science 292, 2060 (2001).Google Scholar