Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:41:34.159Z Has data issue: false hasContentIssue false

Tuning of the electroluminescence from Si nanocrystals through the control of their structural properties

Published online by Cambridge University Press:  11 February 2011

A. Irrera
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
F. Iacona
Affiliation:
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy
D. Pacifici
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
M. Miritello
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
G. Franzò
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
D. Sanfilippo
Affiliation:
STMicroelectronics, Stradale Primosole 50, I-95121 Catania, Italy
P.G. Fallica
Affiliation:
STMicroelectronics, Stradale Primosole 50, I-95121 Catania, Italy
F. Priolo
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
Get access

Abstract

We have studied the structural, optical and electrical properties of MOS devices, where the dielectric layer consists of a substoichiometric SiOx (x < 2) thin film deposited by plasma enhanced chemical vapor deposition. After deposition the SiOx samples were annealed at high temperature (> 1000°C) to induce the separation of the Si and SiO2 phases with the formation of Si nanocrystals embedded in the insulating matrix. The effects of the Si concentration in the SiOx layer and of the annealing temperature on the electrical and optical properties of these devices are reported and discussed. It is shown that by increasing the Si content in the SiOx layers the operating voltage of the device decreases and the total efficiency of emission increases. In fact, devices having an active layer with high Si concentration (46 at.%) annealed at 1100 °C, exhibit the best performances (i.e. the highest electroluminescence intensity and the lowest operating voltage). Furthermore, we have observed that by decreasing the thickness of the SiOx layer from 75 to 25 nm it is possible to strongly reduce the operating voltage down to 4 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iyer, S.S. and Xie, Y.-H., Science 260, 40 (1993).Google Scholar
Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779 (1994).Google Scholar
Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P., and Chen, Y., J. Appl. Phys. 78, 4386 (1995).Google Scholar
4. Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A., Appl. Phys. Lett. 69, 2033 (1996).Google Scholar
5. Iacona, F., Franzò, G. and Spinella, C., J. Appl. Phys. 87, 1295 (2000).Google Scholar
6. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys. 89, 264 (2001).Google Scholar
7. Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).Google Scholar
8. Werwa, E., Seraphin, A.A., Chin, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
9. Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996).Google Scholar
10. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
11. Qin, G.G., Li, A.P., Zhang, B.R., and Li, B.-C., J. Appl. Phys. 78, 2006 (1995).Google Scholar
12. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature, 384, 338 (1996).Google Scholar
13. Rebohle, L., Von Borany, J., Yankov, R.A., Skorupa, W., Tyschenko, I.E., Frob, H., and Leo, K., Appl. Phys. Lett. 71, 2809 (1997).Google Scholar
14. Fujita, S. and Sugiyama, N., Appl. Phys. Lett. 74, 308 (1999).Google Scholar
15. Lalic, N. and Linnros, J., J. Lumin. 80, 75 (1999).Google Scholar
16. Photopoulos, P. and Nassiopoulou, A.G., Appl. Phys. Lett. 77, 1816 (2000).Google Scholar
17. Franzò, G., Irrera, A., Moreira, E.C., Miritello, M., Iacona, F., Sanfilippo, D., Di Stefano, G., Fallica, P.G., and Priolo, F., Appl. Phys. A 74, 1 (2002).Google Scholar
18. Irrera, A., Pacifici, D., Miritello, M., Franzò, G., Priolo, F., Iacona, F., Sanfilippo, D., Di Stefano, G., and Fallica, P.G., Appl. Phys. Lett. 81, 1866 (2002).Google Scholar