Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:26:55.987Z Has data issue: false hasContentIssue false

Tuning of Metal Work Functions with Self-Assembled Monolayers

Published online by Cambridge University Press:  01 February 2011

B. de Boer
Affiliation:
Molecular Electronics, Materials Science Centreplus, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
A. Hadipour
Affiliation:
Molecular Electronics, Materials Science Centreplus, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
M. M. Mandoc
Affiliation:
Molecular Electronics, Materials Science Centreplus, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
P. W. M. Blom
Affiliation:
Molecular Electronics, Materials Science Centreplus, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
Get access

Abstract

We demonstrate the tuning of metal work functions by chemically modifying the metal surface through the formation of chemisorbed self-assembled monolayers (SAMs) derived from 1H,1H,2H,2H-perfluorinated alkanethiols and hexadecanethiol. The ordering inherent in the SAMs creates an effective, molecular dipole at the metal/SAM interface, which increased the work function of Ag (φAg∼4.4 eV) to 5.5 eV (Δφ∼1.1 eV) for 1H,1H,2H,2H-perfluorinated alkanethiols. Hexadecanethiol on the other hand shifted φAg to 3.8 eV (Δφ ∼0.6 eV). On Au, the SAM of 1H,1H,2H,2H-perfluorodecanethiol raised φAu (4.9 eV) with 0.6 eV to 5.5 eV, whereas hexadecanethiol decreased φAu by 0.8 eV. These chemically modified electrodes were applied in the fabrication of polymer LEDs and the hole injection into poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene (MEH-PPV) was investigated. An Ohmic contact for hole injection between a silver electrode functionalized with the perfluorinated SAMs, and MEH-PPV with a HOMO of 5.3 eV was established. Conversely, a silver electrode modified with a SAM of hexadecanethiol lowered φAg to 3.8 eV blocked the hole injection into PPV, which enables studying the electron transport in composite devices. The electron-only current was measured in a polymer/polymer blend photovoltaic cell based on MDMO-PPV (as donor) and poly[oxa-1,4-phenylene-(1-cyano-1,2-vinylene)-(2-methoxy-5-(3′,7′-dimethyloctyloxy)-phenylene)-1,2-(2-cyanovinylene)-1,4-phenylene] (PCNEPV, acceptor). This method demonstrates a simple and attractive approach to modify and improve metal/organic contacts in organic electronic devices like LEDs, photovoltaic cells, and FETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Boer, B. de, Frank, M. M., Chabal, Y. J., Jiang, W., Garfunkel, E., Bao, Z., Langmuir, 20, 15391542 (2004).Google Scholar
2(a) Woudenbergh, T. van, Blom, P. W. M., Huiberts, J. N., Appl. Phys. Lett., 82, 985987 (2003).Google Scholar
(b) Woudenbergh, T. van, Blom, P. W. M., Vissenberg, M. C. J. M., Huiberts, J. N., Appl. Phys. Lett., 79, 16971699 (2001).Google Scholar
3(a) Mihailetchi, V. D., Blom, P. W. M., Hummelen, J. C., Rispens, M. T., J. Appl. Phys., 94, 68496854 (2003).Google Scholar
(b) Duren, J. K. J. van, Mihailetchi, V. D., Blom, P. W. M., Woudenbergh, T. van, Hummelen, J. C., Rispens, M. T., Janssen, R. A. J., Wienk, M. M., J. Appl. Phys., 94, 44774479 (2003).Google Scholar
4 Meijer, E. J., Leeuw, D. M. de, Setayesh, S., Veenendaal, E. van, Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., Klapwijk, T. M., Nature Mat., 2, 678682 (2003).Google Scholar
5 Campbell, I. H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N., Ferraris, J. P., Phys. Rev. B., 54, 1432114324 (1996).Google Scholar
6 Campbell, I. H., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N., Ferraris, J. P., Appl. Phys. Lett., 71, 35283530 (1997).Google Scholar
7 Zehner, R. W., Parsons, B. F., Hsung, R. H., Sita, L. R., Langmuir, 15, 11211127 (1999).Google Scholar
8 Choi, B., Rhee, J., Lee, H. H., Appl. Phys. Lett., 79, 21092111 (2001).Google Scholar
9 Vilan, A., Cahen, D., Trends in Biotech., 20, 2229 (2002).Google Scholar
10 Ashkenasy, G., Cahen, D., Cohen, R., Shanzer, A., Vilan, A., Acc. Chem. Res., 35, 121128 (2002).Google Scholar
11 Alloway, D. M., Hofmann, M., Smith, D. L., Gruhn, N. E., Graham, A. L., Colorado, R. Jr , Wysocki, V. H., Lee, T. R., Lee, P. A., Armstrong, N. R., J. Phys. Chem. B., 107, 1169011699 (2003).Google Scholar
12 Veenstra, S. C., Heeres, A., Hadziioannou, G., Sawatzky, G. A., Jonkman, H. T., Appl. Phys. A., 75, 661666 (2002).Google Scholar
13 Evans, S. D., Ulman, A., Chem. Phys. Lett., 170, 462466 (1990).Google Scholar
14 , J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., Güntherodt, H.-J., Langmuir, 15, 81848188 (1999).Google Scholar
15 Evans, S. D., Urankar, E., Ulman, A., Ferris, N., J. Am. Chem. Soc., 113, 41214131 (1991).Google Scholar
16 Howell, S., Kuila, D., Kasibhatla, B., Kubiak, C. P., Janes, D., Reifenberger, R., Langmuir, 18, 51205125 (2002).Google Scholar
17 Cahen, D., Kahn, A., Adv. Mater., 15, 271277 (2003).Google Scholar
18 Liu, G-Y., Fenter, P., Chidsey, C. E. D., Ogletree, D. F., Eisenberger, P., Salmeron, M., J. Chem. Phys., 101, 43014306 (2000).Google Scholar
19 Tamada, K., Ishida, T., Knoll, W., Fukushima, H., Collorado, R. Jr , Graupe, M., Shmakova, O. E., Lee, T. R., Langmuir, 17, 19131921 (2001).Google Scholar
20 Schönherr, H., Vancso, G. J., Langmuir, 13, 37693774 (1997).Google Scholar
21 Ulman, A., Chem. Rev., 96, 15331554 (1996).Google Scholar
22 Boer, B. de, Meng, H., Perepichka, D. F., Zheng, J., Frank, M. M., Chabal, Y. J., Bao, Z., Langmuir, 19, 42724282 (2003).Google Scholar
23 Naud, C., Calas, P., Blancou, H., Commeyras, A., J. Fluor. Chem., 104, 173183 (2000).Google Scholar
24 Neef, C. J., Ferraris, J. P., Macromolecules, 33, 23112314 (2000).Google Scholar
25 Hansen, W. N., Hansen, G. J., Surf. Sci., 481, 172184 (2001).Google Scholar
26a) Blom, P. W. M., Jong, M. J. M. de, Vleggaar, J. J. M., Appl. Phys Lett., 68, 3308 (1996).Google Scholar
b) Blom, P. W. M., Jong, M. J. M. de, Liedenbaum, C. T. H. F., Polym. Adv. Technol., 9, 390 (1998).Google Scholar
27a) Tillmann, H., Hörhold, H.-H., Synth. Met., 101, 138 (1999).Google Scholar
b) Breeze, A. J., Schlesinger, Z., Carter, S. A., Tillmann, H., Hörhold, H.-H., Sol. En. Mater.& Sol. Cells, 83, 263 (2004).Google Scholar
28 Veenstra, S. C., Verhees, W. J. H., Kroon, J. M., Koetse, M. M., Sweelssen, J., J. Bastiaansen, J. A. M., Schoo, H. F. M., Yang, X., Alexeev, A., Loos, J., Schubert, U. S., Wienk, M. M., Chem. Mater., 16, 2503 (2004).Google Scholar
29The electron current in a conventional polymer/polymer photovoltaic cell based on a PEDOT/PSS bottom contact and a LiF/Al top contact can differ from the electron-only current measured in Fig. 3B, since the accumulation of holes might alter the electron transport.Google Scholar