Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:07:18.219Z Has data issue: false hasContentIssue false

Tuning of Energy Levels in a Superlattice

Published online by Cambridge University Press:  22 February 2011

Francois M. Peeters*
Affiliation:
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium, Email: [email protected]
Get access

Abstract

The gap between the minibands of a conventional superlattice (or between the subbands of a quantum well) can be controlled by introducing potential barriers in its wells. An appropriate choice of the position, the width d, and the height Vd of these barriers, achieved by standard methods, can reduce the energy minibands to the desired values. When these barriers are introduced at the center of the wells of the original structure, the position of the second miniband in energy space changes very little with d and/or Vd whereas that of the first miniband can change by one to two orders of magnitude. This leads to a tuning of the first miniband and of the energy gap between the first two minibands. Similar results are obtained for the case of wells in the barriers and for the tuning of impurity states in a superlattice. Possible applications include infrared photodetectors and tuning of the tunneling current.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dingle, R., in Semiconductors and Semimetals (Academic Press, New York, 1987), Vol. 24.Google Scholar
2. Levine, B.K., J. Appl. Phys. 74, R1 (1993).Google Scholar
3. Levine, B.K., Choi, K.K., Bethea, C.G., Walker, J., and Malik, R.J., Appl. Phys. Lett. 50, 1092 (1987).Google Scholar
4. Levine, B.K., Bethea, C.G., Hasnain, G., Walker, J., and Malik, R.J., Appl. Phys. Lett. 53, 296 (1988).Google Scholar
5. Vasilopoulos, P., Peeters, F.M., and Aitelhabti, D., Phys. Rev. B41, 10021 (1990).Google Scholar
6. Trzeciakowski, W. and McCombe, B. D. Appl. Phys. Lett. 55, 891 (1989).Google Scholar
7. Peeters, F.M. and Vasilopoulos, P., Appl. Phys. Lett. 55, 1106 (1989).Google Scholar
8. Beltram, F. and Capasso, F., Phys. Rev. B38, 3580 (1988).Google Scholar
9. Gumbs, G. and Salamn, A., Phys. Rev. B41, 10124 (1990).Google Scholar
10. Lin, S. and Smit, J., Am. J. Phys. 48, 193 (1980).Google Scholar
11. Yuh, P. and Wang, K.L., Phys. Rev. B38, 13307 (1988).CrossRefGoogle Scholar
12. Pan, S. and Feng, S., Phys. Rev. B44, 5668 (1991).CrossRefGoogle Scholar
13. Shi, J. and Pan, S., Phys. Rev. B48, 8136 (1993).Google Scholar
14. Helm, M., Colas, E., England, P., DeRosa, F., and Allen, S.J. Jr., Appl. Phys. Lett. 53, 1714 (1988).Google Scholar
15. Helm, M., Peeters, F.M., DeRosa, F., Colas, E., Harbison, J.P., and Florez, L.T., Phys. Rev. B43, 13983 (1991).Google Scholar
16. Parihar, S.R. and Lyon, S.A., Appl. Phys. Lett. 63, 2396 (1993).Google Scholar