Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:59:12.916Z Has data issue: false hasContentIssue false

Tribology Studies of Organic Thin Films by Scanning Force Microscopy

Published online by Cambridge University Press:  15 February 2011

G. Bar
Affiliation:
Freiburger Materialforschungszentrum, FMF, Albert-Ludwigs University, Stefan-Meier-Str. 21, 79104 Freiburg, Germany, [email protected]
S. Rubin
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
A. N. Parikh
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
B. I. Swanson
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
T. A. Zawodzinski
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Using the micro-contact printing method we prepared patterned self-assembled monolayers (SAMs) consisting of methyl-terminated alkanethiols of different chain lengths. The samples were characterized using lateral force microscopy (LFM) and the force modulation technique (FMT). In general, higher friction is observed over the short chain regions than over the long chain regions when a low or moderate load is applied to the scanning force microscopy (SFM) tip. For such cases the high friction (short chain) regions are also “softer” as measured by FMT. At high loads, a reversal of the image contrast is observed and the short chain regions show a lower friction than the long chain regions. This image contrast is reversible upon reduction of the applied load.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Seto, J., Nagai, T., Ishimoto, C. and Watanabe, H., Thin Solid Films 160, 453 (1985).Google Scholar
2. Deng, K., Collins, R. J., Mehregany, M. and Sukenik, C. N., J. Electrochem. Soc. 142, 1278 (1995).Google Scholar
3. Willner, I., Blonder, R. and Dagan, A., J. Am. Chem. Soc. 116, 9365 (1994).Google Scholar
4. Ulman, A., Introduction to Ultrathin Organic Films, (Academic Press, Inc., San Diego, (1991), pp. 339362.Google Scholar
5. Wilbur, J. L., Kim, E., Xia, Y. and Whitesides, G. M., Adv. Mat. 7, 649 (1995).Google Scholar
6. Gardner, T. J., Friesbie, C. D. and Wrighton, M. S., J. Am. chem. Soc. 117, 6927 (1995).Google Scholar
7. Overney, R. M., Meyer, E., Frommer, J., Güntherodt, H. J., Fujihira, M., Takano, H. and Gotoh, Y., Langmuir 10, 1281 (1994).Google Scholar
8. Xiao, X., Hu, J., Charych, D. H. and Salmeron, M., Langmuir 12, 235 (1996).Google Scholar
9. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. and Lieber, C. M., Science 263, 2071 (1994).Google Scholar
10. Wilbur, J. L., Biebuyck, H. A., MacDonald, J. C. and Whitesides, G. M., Langmuir 11, 825 (1995).Google Scholar
11. Radmacher, M., Tillmann, R. W., Fritz, M. and Gaub, H. E., Science 257, 1900 (1992).Google Scholar
12. Overney, R. M., Bonner, T., Meyer, E., Rüetschi, M., Lüthi, R., Howald, L., Frommer, J., Güntherodt, H.-J., Fujihira, M. and Takano, H., J. Vac. Sci. Technol. B 12, 1973 (1994).Google Scholar
13. Kumar, A. and Whitesides, G. M., Appl. Phys. Lett. 63, 2002 (1993).Google Scholar
14. This is an estimate only assuming a force constant of 0.1 N/m for the used cantilever according to the value provided by the manufacturer.Google Scholar
15. Noy, A., Frisbie, C. D., Rosznyai, L. F., Wrighton, M. S. and Lieber, C. M., J. Am. Chem. Soc. 117, 7943 (1995).Google Scholar
16. Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whitesides, G. M. and Nuzzo, R. G., J. Am. Chem. Soc. 111, 321 (1989).Google Scholar
17. Porter, M. D., Bright, T. B., Allara, D. L. and Chidsey, C. E. D., J. Am. Chem. Soc. 109, 3559 (1987).Google Scholar
18. Li, G.-y. and Salmeron, M. B., Langmuir 10, 367 (1994).Google Scholar