Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:21:47.220Z Has data issue: false hasContentIssue false

Triangular Step Instability and 2D/3D Transition During the Growth of Strained Ge Films on Si(100)

Published online by Cambridge University Press:  15 February 2011

K. M. Chen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
D. E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
M. Mostoller
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
T. Kaplan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
T. Thundat
Affiliation:
Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. J. Warmack
Affiliation:
Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We show that an activation energy barrier exists to the formation of wavy step edges due to stress-driven 2D instability. The barrier height and the barrier width depend sensitively on the surface stress anisotropy and step free energy. The large misfit strain of Ge films significantly reduces the barrier by lowering the SB step energy, inducing SA steps to undergo a triangular instability even during low temperature growth of Ge on Si(100). The step instability results in a novel arrangement of stress domains, and the interaction between the domains causes a spatial variation of surface strain with a surprisingly large influence on the energy barrier for island nucleation. Calculations indicate a dramatic enhancement in the nucleation of 3D islands at the apex regions of triangular steps, in good agreement with our experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tersoff, J. and Pehlke, E., Phys. Rev. Lett. 68, 816 (1992).Google Scholar
2. Alerhand, O. A., Vanderbilt, D., Meade, R. D., and Joannopoulos, J. D., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
3. see for example, Mo, Y.-W. et al. , J. Vac. Sci. Technol. A8, 201 (1990).Google Scholar
4. Tromp, R. M. and Reuter, M. C., Phys. Rev. Lett. 68, 820 (1992).Google Scholar
5. Wu, Fang, Chen, X., Zhang, Z. and Lagally, M. G., Phys. Rev. Lett. 74, 574 (1995).Google Scholar
6. Swartzentruber, B. S., Mo, Y. W., and Lagally, M. G., Appl. Phys. Lett. 58, 822 (1991).Google Scholar
7. Bales, G. S. and Zhangwill, A., Phys. Rev. B 41, 5500 (1990)Google Scholar
8. Stillinger, F. and Weber, T., Phys. Rev. B 31, 5262 (1985)Google Scholar
9. Poon, Tze W., Yip, S., Ho, P. S. and Abraham, F. F., Phys. Rev. Lett. 65, 2161 (1990)Google Scholar
10. Xie, Y. H. et al. , Phys. Rev. Lett. 73, 3006 (1994)Google Scholar
11. Payne, M.C., Roberts, N., Needs, R. T., Needels, M. and Joannopoulos, J. D.. Surf. Sci. 211/212, 1 (1989).Google Scholar
12. Swartzentruber, B. S., Mo, Y.-W., Kariotis, R., Lagally, M. G., and Webb, M. B., Phys. Rev. Lett. 65, 1913 (1990).Google Scholar
13. Bartelt, N.C., Tromp, R. M. and Williams, E.D.. Phys. Rev. Lett. 73, 1656 (1994).Google Scholar
14. Chen, K. M. et al. Phys. Rev. Lett., to be published.Google Scholar
15. Tersoff, J. and LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar