Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:08:40.995Z Has data issue: false hasContentIssue false

Transport Studies on Two-subband-populated AlGaN/GaN Heterostructures

Published online by Cambridge University Press:  11 February 2011

D. R. Hang
Affiliation:
Department of Physics, National Taiwan University, Taipei, Taiwan, 106 Republic of China
C. F. Huang
Affiliation:
Department of Physics, National Taiwan University, Taipei, Taiwan, 106 Republic of China
Y. F. Chen
Affiliation:
Department of Physics, National Taiwan University, Taipei, Taiwan, 106 Republic of China
B. Shen
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China.
Get access

Abstract

We report an investigation of electronic properties of two-dimensional electron gas (2DEG) confined at AlGaN/GaN heterostructures by magnetotransport measurements. The second-subband population is manifested by the multi-frequency in the Shubnikov-de Haas (SdH) oscillations. The modulated patterns of SdH oscillations which are due to the two-subband occupancy can be drastically enhanced by employing the microwave modulation technique. This unique advantage enables us to provide direct experimental evidence that the 2DEG in the second subband has a higher mobility than that in the first subband in the modulation-doped Al0.22Ga0.78N/GaN heterostructures by means of microwave-modulated magnetotransport measurements. The carrier concentrations and 2DEG Fermi energy for each subband were determined. It was found that the second-subband population ratio increases with spacer thickness up to 5 nm, while the subband separation decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, T. Y., Chen, H. M., Tsai, M. S., Chen, Y. F., Fang, F. F., Lin, C. F., and Chi, G. C., Phys. Rev. B 58, 13793 (1998).Google Scholar
2. Hang, D. R., Liang, C. -T., Huang, C. F., Chang, Y. H., Chen, Y. F., Jiang, H. X., and Lin, J. Y., Appl. Phys. Lett. 79, 66 (2001).Google Scholar
3. Garrido, J. A., Sánchez-Rojas, J. L., Jiménez, A., Muñoz, E., Omnes, F., and Gibart, P., Appl. Phys. Lett. 75, 2407 (1999).Google Scholar
4. Hang, D. R., Chen, C. H., Chen, Y. F., Jiang, H. X., and Lin, J. Y., J. Appl. Phys. 90, 1887 (2001).Google Scholar
5. Bergman, J. P., Lundstöm, T., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69, 3456 (1996).Google Scholar
6. Kurtz, S. R., Allerman, A. A., Koleske, D. D., and Peake, G. M., Appl. Phys. Lett. 80, 4549 (2002).Google Scholar
7. Fang, C. Y., Lin, C. F., Chang, E. Y., and Feng, M. S., Appl. Phys. Lett. 80, 4558 (2002).Google Scholar
8. Li, Z. -F., Lu, W., Shen, S. C., Holland, S., Hu, C. M., Heitmann, D., Shen, B., Zheng, Y. D., Someya, T., and Arakawa, Y., Appl. Phys. Lett. 80, 431 (2002).Google Scholar
9. Zheng, Z. W., Shen, B., Zhang, R., Gui, Y. S., Jiang, C. P., Ma, Z. X., Zheng, G. Z., Guo, S. L., Shi, Y., Han, P., Zheng, Y. D., Someya, T., and Arakawa, Y., Phys. Rev. B 62, R7739 (2000).Google Scholar
10. Hang, D. R., Liang, C. -T., Juang, J. -R., Huang, T. -Y., Hung, W. K., Chen, Y. F., Kim, G. -H., Lee, Jae-Hoon and Lee, Jung-Hee, J. Appl. Phys. revised.Google Scholar
11. Saxler, A., Debray, P., Perrin, R., Elhamri, S., Mitchel, W. C., Elsass, C. R., Smorchkova, I. P., Heying, B., Haus, E., Fini, P., Ibbetson, J. P., Keller, S., Petroff, P. M., DenBaars, S. P., Mishra, U. K., and Speck, J. S., J. Appl. Phys. 87, 369 (2000).Google Scholar