Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T10:42:18.747Z Has data issue: false hasContentIssue false

Transport Properties of Superlattice Nanowires and Their Potential for Thermoelectric Applications

Published online by Cambridge University Press:  11 February 2011

Yu-Ming Lin
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Mildred S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

A theoretical model for the electronic structure and transport properties of superlattice (SL) nanowires is presented, based on the electronic tunneling between quantum dots. Due to the periodic potential perturbation, SL nanowires exhibit unusual features in the electronic density of states that are absent in homogeneous nanowires. Transport property calculations of PbSe/PbS SL nanowires are presented, showing improved thermoelectric performance compared to homogeneous nanowires because of a lower lattice thermal conductivity and an enhanced Seebeck coefficient, indicating that SL nanowires are promising systems for thermoelectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Black, M. R., Lin, Y.-M., Cronin, S. B., Rabin, O., and Dresselhaus, M. S., Phys. Rev. B 65, 195417 (2002).Google Scholar
Hick, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
3. Lin, Y.-M., Rabin, O., Cronin, S. B., Ying, J. Y., and Dresselhaus, M. S., Appl. Phys. Lett. 81, 2403 (2002).Google Scholar
4. Harman, T. C., Taylor, P. J., Walsh, M. P., and Laforge, B. E., Science 297, 2229 (2002).Google Scholar
5. Bjork, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Deppert, K., Wallenberg, L. R., and Samuelson, L., Nano Lett. 2, 87(2002).Google Scholar
6. Piraux, L., George, I. M., Despres, J. F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Appl. Phys. Lett. 65, 2484 (1994).Google Scholar
7. Gudiksen, M. S., Laihon, L. J., Wang, J., Smith, D. C., Lieber, C. M., Nature 415, 617 (2002)Google Scholar
8. Lin, Y.-M., Rabin, O., and Dresselhaus, M. S., in Proceedings of the 21th International Conference on Thermoelectrics (IEEE, 2002), in press.Google Scholar
9. Lin, Y.-M., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 62, 4610 (2000).Google Scholar
10. Kittel, C., in Introduction to Solid State Physics 7th ed., John Wiley & Sons (New York,1996), pp. 179182 Google Scholar
11. Zeng, T. and Chen, G., in Proc. International Mechanical Engineering Congress and Exposition 2000, Orlando, ASME HTD-Vol. 366–21, pp. 361372 Google Scholar
12. Dames, C. and Chen, G., in Proceedings of the 21th International Conference on Thermoelectrics (IEEE, 2002), in press.Google Scholar
13. Lin, P. J. and Kleinman, L., Phys. Rev. 142, 478 (1966)Google Scholar
14. Alligaier, R. S. and Scanlon, W. W., Phys. Rev. 111, 1029 (1958)Google Scholar