Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T15:32:00.185Z Has data issue: false hasContentIssue false

Transport and Optical Characteristics of Al-rich AlO Film and its Application to a Non-volatile Memory

Published online by Cambridge University Press:  01 February 2011

Shunji Nakata
Affiliation:
[email protected], NTT, Microsystem Integration Labs., 3-1 Morinosato Wakamiya, Atsugi-shi, 243-0198, Japan
Shingo Nagai
Affiliation:
[email protected], Kanazawa University, Grad. School of Natural Sci. & Tech., Kakuma, Kanazawa, 920-1192, Japan
Minoru Kumeda
Affiliation:
[email protected], Kanazawa University, Grad. School of Natural Sci. & Tech., Kakuma, Kanazawa, 920-1192, Japan
Takeshi Kawae
Affiliation:
[email protected], Kanazawa University, Grad. School of Natural Sci. & Tech., Kakuma, Kanazawa, 920-1192, Japan
Akiharu Morimoto
Affiliation:
[email protected], Kanazawa University, Grad. School of Natural Sci. & Tech., Kakuma, Kanazawa, 920-1192, Japan
Yoshitada Katagiri
Affiliation:
[email protected], NTT Microsystem Integration Laboratories, 3-1 Morinosato Wakamiya, Atsugi, 243-0198, Japan
Tatsuo Shimizu
Affiliation:
[email protected], Kanazawa University, Grad. School of Natural Sci. & Tech., Kakuma, Kanazawa, 920-1192, Japan
Get access

Abstract

We propose the new process for fabricating Al-rich Al2O3 thin film, which is used as a charge storage layer for non-volatile Al2O3 memory. Nanoscale Al-rich thin film is deposited using RF magnetron co-sputtering by setting an Al metal plate on an Al2O3 target. Al-rich Al2O3 shows a larger conduction current in I-V characteristics and larger optical absorption than stoichiometric Al2O3 due to the increased electron trap sites. The C-V characteristics of the Al-rich Al2O3 thin film show a large hysteresis window due to the charge trapping effect in the Al-rich structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Single Charge Tunneling, edited by Grabert, H. and Devoret, M. H. (Plenum, New York, 1992).Google Scholar
2 Nakata, S., Phys. Rev. B 47, 1679 (R) (1993).Google Scholar
3 Libsch, F. R. and White, M. H., Solid State Electronics 33, 105 (1990).Google Scholar
4 Lee, C.H., Choi, K. I., Cho, M. K., Song, Y. H., Park, K. C. and Kim, K., Tech. Dig. Int. Electron Devices Meet., 2003, p. 613.Google Scholar
5 Nakata, S., Saito, K. and Shimada, M., IEE Electronics Lett. 41, 721 (2005).Google Scholar
6 Nakata, S., Saito, K., and Shimada, M., Appl. Phys. Lett. 87, 223110 (2005).Google Scholar
7 Nakata, S., Saito, K., and Shimada, M., Jpn. J. Appl. Phys. 45, 3176 (2006).Google Scholar
8 Statistical Mechanics, edited by Kubo, R. (Elsevier, Amsterdam, 1990).Google Scholar
9 Jin, Y., Saito, K., Shimada, M., and Ono, T., J. Vac. Sci. Technol. B 21(3), 942 (2003).Google Scholar
10 Sugizaki, T., Kobayashi, M., Ishidao, M., Minakata, H., Yamaguchi, M., Tamura, Y., Sugiyama, Y., Nakanishi, T., and Tanaka, H., Symposium on VLSI Technology, 2003, p. 27.Google Scholar
11 Minami, S., and Kamigaki, Y., IEEE Trans. Electron Devices, ED-38, 2519 (1991).Google Scholar