Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:19:39.575Z Has data issue: false hasContentIssue false

Transport Across Silicon Grain Boundaries

Published online by Cambridge University Press:  15 February 2011

J. Werner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, Federal Republic of Germany
W. Jantsch
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, Federal Republic of Germany
K.H. Froehner
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, Federal Republic of Germany
H.J. Queisser
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

By comparison of the capacitance and the conductivity of p–type Si bicrystals, we show quantitatively that current transport occurs through thermionic emission of holes across the potential barrier, which is caused by charged donors in the grain boundary. Starting from this finding, we propose a simple model which allows for the first time a spectroscopic determination of the grain boundary density of states from photocapacitance data. Results indicate the presence of band tails and additional mid-gap states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J.J.J., Dapkus, P.D., Dupuis, R.D. and Yingling, R.D., J. Appl. Phys. 51, 3794 (1980).Google Scholar
2. Seager, C.H. and Pike, G.E., Appl. Phys. Lett. 35, 709 (1979).Google Scholar
3. Matarè, H.F. and Wegener, H.A.R., Z. Physik 148, 631 (1957)CrossRefGoogle Scholar
4. Siegel, W., Kühnel, G. and Ziegler, E., phys. stat. sol. (a) 64,249 (1981).CrossRefGoogle Scholar
5. Ma, Y.Y. and Bube, R., J. Electrochem. Soc.: Solid State Science and Technology 124, 1430 (1977).CrossRefGoogle Scholar
6. Hirose, M., Taniguchi, M. and Osaka, Y., J. Appl. Phys. 50, 377 (1979).Google Scholar
7. Pike, G.E. and Seager, C.H., J. Appl. Phys. 50, 3414 (1979).CrossRefGoogle Scholar
8. Sze, S.M., Physics of Semiconductor Devices, Wiley 1969, p. 380.Google Scholar
9. Taylor, W.E., Odell, N.H. and Fan, H.Y., Phys. Rev. 88, 867 (1952).Google Scholar
10. Lang, D.V., Grimmeiss, H.G., Meijer, E. and Jaros, M., Phys. Rev. B 22, 3917 (1980).Google Scholar
11. Sah, C.T. and Wang, C.T., J. Appl. Phys. 46, 1767 (1975).CrossRefGoogle Scholar