Published online by Cambridge University Press: 22 February 2011
Shallow-junction semiconductor devices have been fabricated using ion implantation and transient annealing with a Varian IA-200 isothermal annealer. Boron implanted diodes, npn bipolar transistors and CMOS ring oscillators have been fabricated and are compared to furnace annealed devices. Boron implanted diodes have been annealed with the RIA and yield acceptably low leakage currents, comparable to furnace annealed devices. The RIA devices have recombination lifetimes of ∼10 μsec. The bipolar transistors subjected to a transient anneal have good base-collector and emitterbase junctions as well as gains of ∼100 in good agreement with the design of the device. MOSFETs and CMOS ring oscillators were fabricated using self-aligned polysilicon gates. The transient annealed devices were equal or superior to devices which were furnace annealed at 800°C for 10 min. The low temperature furnace anneal was necessary to minimize short channel effects. The transient anneal resulted in ring oscillators which were a factor of two faster than furnace samples that were annealed.