Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T09:01:31.210Z Has data issue: false hasContentIssue false

Transient and Furnace Annealing of Ion Implanted Gallium Arsenide

Published online by Cambridge University Press:  15 February 2011

J. S. Williams
Affiliation:
Department of Communication and Electronic Engineering,Royal Melbourne Institute of Technology, Melbourne, 3000, Australia.
H. B. Harrison
Affiliation:
Department of Communication and Electronic Engineering,Royal Melbourne Institute of Technology, Melbourne, 3000, Australia.
Get access

Abstract

This review examines the annealing behaviour of ion implanted gallium arsenide during furance, laser and e-beam processing.The two annealing regimes, namely solid phase regrowth via furnace or CW laser/e-beam annealing and liquid phase epitaxy produced by pulsed lasers/e-beam, are examined in some detail.Emphasis is placed upon an understanding of the physical processes which are important during the various annealing modes.Comparison with the annealing behaviour of ion implantedelemental semiconductors(notably silicon) is made throughout the review to highlight relevant similarities and differences between compound and elemental semiconductors.The electrical properties of annealed gallium arsenide layers are not treatedin any detail, although particular observations which are relevant to the annealing processes are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “Laser Solid Interactions and Laser Processing - 1978”, Eds. Ferris, S.D., Leamy, H. J., Poate, J. M., AIP Conf. Series No. 50 New York (1979).Google Scholar
2. “Laser and Electron Beam Processing of Electronic Materials”, Eds. Anderson, C. L., Cellar, G. K., Rozgonyi, G. A., ECS, Princeton, N.J.(1980).Google Scholar
3. “Laser and Electron Beam Processing of Materials”, Eds. White, C. W., Peercy, P. S., Academic Press, New York (1980).Google Scholar
4. Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. E., Smith, P. R., Surko, C. M., Venkatesan, T. N. C., in Ref. 1, p. 11.Google Scholar
5. Williams, J. S., Brown, W. L., Leamy, H. J., Poate, J. M., Rodgers, J. W., Rousseau, D., Rozgonyi, G. A., Shelnutt, J. A., Sheng, T. T., Appl. Phys.Lett. 33, 542 (1978).CrossRefGoogle Scholar
6. Donnelly, J. P., Inst. Phys. Conf. Series No. 33, 167 (1977) and references therein.Google Scholar
7. Liu, P. L., Ri Yen, R, Bloembergen, N., Hodgson, R. T., in Ref. 3, p. 156.Google Scholar
8. Picraux, S. T., Rad. Effects 17, 261 (1973).CrossRefGoogle Scholar
9. Williams, J. S., Austin, M. W., Nucl. Instr. Meth. 165 (1980).Google Scholar
10. Ahmed, N. A. G., Carter, G., Christodoulides, C. E., Nobes, M. J., Titov, A., Nucl. Inst. Meth. 165 (1980).Google Scholar
11. Mazey, D. J., Nelson, R. S., Rad. Effects 1, 229 (1969).Google Scholar
12. Williams, J. S., Austin, M. W., Harrison, H. B., in “Thin Film Interfaces and Interactions”, Eds. Baglin, J. E. E., Poate, J. M. (ECS, Princeton, 1980) p. 187.Google Scholar
13. Carter, G., Grant, W. A., Haskell, J. D., Stephens, G. A., in “Ion Implantation” Ed. Chadderton, L. T., Eisen, F. H. (Gordon and Breach, London, 1971) p. 261.Google Scholar
14. Gamo, K., Ineda, T., Mayer, J. W., Eisen, F. H., Rhodes, C. G., Rad. Eff. 33, 85 (1977).Google Scholar
15. Williams, J. S., Austin, M. W., Appl. Phys. Lett. 36, 996 (1980).Google Scholar
16. See, for example, Sealy, J. B., J. Mat. Sci. 10, 683 (1975);CrossRefGoogle Scholar
16a Elliott, C. R., Ambridge, T., Heckingbottom, R., Solid State Electronics 21, 859 (1978);CrossRefGoogle Scholar
16b Hutchinson, P. W., Dobson, P. S., J. Mat. Sci. 10, 1636 (1975).Google Scholar
17. Eisen, F. H., “Ion Beam Modification of Materials”, Eds. Guylai, J., Lohner, T., Pasztor, E., Vol. 1, p. 147 (1978).Google Scholar
18. Eisen, F. H., Mayer, J. W. in “Treatise on Solid State Chemistry, Vol. 6B, Ed. Hannay, N. B., Plenum Press, N.Y., p. 125 (1976).Google Scholar
19. Cohen, R. L., Williams, J. S., unpublished;Google Scholar
19a Cohen, R. L., Williams, J. S., Feldman, L. C., West, K., Appl. Phys. Lett. 33, 751 (1978).Google Scholar
20. Unpublished data from the RMIT and Stanford groups.Google Scholar
21. Anderson, C. L., Dunlap, H. L., Hess, L. D., Vaidyanathan, K. V., in Ref. 1, p. 585.Google Scholar
22. Olson, G. L., Anderson, C. L., Dunlap, H. L., Hess, L. D., McFarlane, R. A., Vaidyanathan, K. V., in Ref. 2, p. 467.Google Scholar
23. Nissim, Y. I., Gibbons, J. F., these proceedings.Google Scholar
24. Ahmed, H., McMahon, R. A., Electronics Letters (in press).Google Scholar
25. See for example, Lau, S. S., Mayer, J. W., Tseng, W. F., in Ref. 1, p. 84.Google Scholar
26. Golovchenko, J. A., Venkatesan, T. N. C., Appl. Phys. Lett. 32, 464(1978).Google Scholar
27. Sealy, B. J., Badawi, N. H., Kular, S. S., Stephens, K. G., in Ref. 1,p. 610.Google Scholar
28. Campisano, S. V., Foti, G., Rimini, E., Eisen, F. H., Nicolet, M. A., Sol.State Electronics 21, 485 (1978).Google Scholar
29. Barnes, P. A., Leamy, H. J., Poate, J. M., Ferris, S. D., Williams, J. S., Celler, G. K., Appl. Phys. Lett. 33, 965 (1978).Google Scholar
30. Greenwald, A. C., Kirkpatrick, A. R., Little, R. G., Minuchi, J. A., J. Appl. Phys. 50, 783 (1979).CrossRefGoogle Scholar
31. Kachurin, G. A., Pridachin, N. B., Smirnou, L. S., Sov. Phys. Semiconductors 9, 946 (1976).Google Scholar
32. Barnes, P. A. et al. , in Ref. 2, p. 421.Google Scholar
33. Campisano, S. U., Foti, G., Rimini, E., Eisen, F. H., Tseng, W. F., Nicolet, M. A., Tandon, J. L., J. Appl. Phys. 51, (1980).Google Scholar
34. Gamo, K., Yuba, Y., Oraby, A. H., Murakami, K., Namba, S., Kawasaki, Y., in Ref. 3, p. 322.Google Scholar
35. Golecki, I., Nicolet, M. A., Maenpaa, M., Tandon, J. L., Kirkpatrick, C. G., Sadana, D. K., Washburn, J., in Ref. 3, p. 347.Google Scholar
36. Tandon, J. L., Eisen, F. H., in Ref. 1, p. 616.Google Scholar
37. Eisen, F. H., in Ref. 3, p. 309.Google Scholar
38. Narayan, J., in Ref. 2, p. 249.Google Scholar
39. Venkatesan, T. N. C. et al. , in Ref. 1, p. 629.Google Scholar
40. Sealy, B. J. et al. , in Ref. 3, p. 354;Google Scholar
40aalso Kulav, S. S., Sealy, B. J., Badawi, M. H., Stephens, G. K., Sadana, D., Booker, G. R., Elect. Letters 15, 413 (1979).Google Scholar
41. Inada, T., Kato, S., Maeda, Y., Tokunaga, K., J. Appl. Phys. 50, 6000 (1979).CrossRefGoogle Scholar
42. Fan, J. C., Chapman, R. L., Donnelly, J. P., Turner, G. W., Bozler, C. O., Appl. Phys. Lett. 34, 780 (1979).Google Scholar
43. Gat, A. et al. Appl. Phys. Lett. 32, 276 (1978).Google Scholar
44. Williams, J. S., Brown, W. L., Poate, J.M., in Ref. 1. P.233.Google Scholar
45. Comas, J., Plew, L. et al. , in “Ion Implantation in Semiconductor – 1976“, Ed. Chernow, Borders Brice (Plenum Press, N.Y. 1977) p. 141.Google Scholar
46. Eisen, F. H., Welch, B. M., in Ref. 45, p.97.Google Scholar
47. Lidow, A., Gibbons, J. F., Deline, V. R., Evans, C. A. Jr. Appl. Phys.Lett. 32, 572 (1978).Google Scholar
48. Brawn, J. R., Grant, W. A. in “Applications of Ion Beams to Materials”, Ed. Colligon Carter, Grant, Inst. Phys. Conf. 28, 59 (1976).Google Scholar
49. Barnes, P. A. et al. , in Ref. 1, p.647.Google Scholar
50. Sealy, B. J., Kular, S. S., Stephens, K. G., Elect. Lett. 14, 720 (1978).Google Scholar
51. Liu, S. G., Wu, C. P., Magee, C. W., in Ref. 3, p. 341.Google Scholar
52. Wood, R. F., Lownes, D. H., Christie, W. H., these proceedings.Google Scholar
53. Pianatta, P. A., Stolte, C. A., Hanson, J. L., in Ref. 3, p. 328; and these proceedings.Google Scholar
54. White, C. W., Wilson, S. R., Appleton, B. R., Young, F. W., Narayan, J., in Ref. 3, p. 111.Google Scholar
55. Williams, J. S., in Ref. 2, p. 249.Google Scholar
56. Harrison, H. B., Williams, J. S., in Ref. 3, p. 481.Google Scholar