Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T21:59:39.715Z Has data issue: false hasContentIssue false

Trace Element Distribution Patterns in Magnetically Separated Fractions of Fracture Filling Material

Published online by Cambridge University Press:  15 February 2011

D. Cui
Affiliation:
Department of Chemistry, Nuclear Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden
T. E. Eriksen
Affiliation:
Department of Chemistry, Nuclear Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Get access

Abstract

The distribution patterns of trace elements in magnetically separated fractions of a granite fracture filling material have been studied using instrumental neutron activation analysis. The distribution patterns of trace elements with similar ionic radii and the same charge, Fe-Co, Rb-Cs, Hf-Zr, U-Th, and light REE, were found to be similar. Whereas most of the elements are found in higher concentrations in the more clay rich fractions, Rb and Cs display a more homogeneous distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chapman, N.A., McKinly, I. G., Smellie, J.A.T.; SKBF/KBS Technical Report 84-16 (1984) Stocholm and Nagra Rep., (NTB 84-41) Baden, (1984).Google Scholar
2. Smellie, J.A.T., MacKenzie, A.B., Scott, R. D., SKB Technical Report 86-01 SKB Stockholm (1986).Google Scholar
3. Bruno, I., Cross, J.E., Eikenberg, J., SKB Technical Report 90-20, (also as Nagra NTB 90-29 and UK DOE WR 90-51)(1990)Google Scholar
4. Smellie, J.A.T., MacKenzie, A.B., Scott, R.D., Chemical Geology 55, 233254 (1986)Google Scholar
5. Guthrie, V.A., Chemical Geology 77, 87103 (1989)Google Scholar
6. Hofinann, B.A., in MRS Symp. Pro, 127, Scientific Basis for Nuclear Waste Management, XII, p 921–92s. (1989).Google Scholar
7. Menager, M.T., Heath, M.T., Ivanovich, M., Montjotin, C., Barillon, I., Camp, J., Hasler, S.E., Radiochimica Acta 66/67 475483 (1994)Google Scholar
8. Griffault, L.Y. and Shewchuk, T. A., Radiochimica Acta 66/67, 495503 (1994)Google Scholar
9. Landström, O. and Tullborg, E. L., SKB Technical Report 90-37. Stockholm (1990)Google Scholar
10. Tullborg, E. L., Wallin, B., Landstrém, O., Äspö Hard rock laboratory PR 25-91-05, SKB, Stockholm (1991)Google Scholar
11. Eriksen, T. E., Cui, D., SKB Technical Report 94-27 Stockholm (1994).Google Scholar
12. Cui, D., Eriksen, T.E., Cs and Co sorption on fracture filling material (to be published)Google Scholar
13. Cui, D., Eriksen, T.E., Reduction of pertechnate in solution by heterogeneous electron transfer from Fe(II)-containing geological material. Environmental Science & Technology (in press)Google Scholar
14. Henderson, P. (ed) Rare earth element geochemistry, Elservier, Amsterdam, p 467 ISBN 0-444-42148-3 (1984).Google Scholar
15. Graff, P.R., Determination of FeO in geological material, Nor. Geol. Unders. 388 912 (1983)Google Scholar
16. Nordstrom, D.K., Anderws, J.N., Carlsson, L., Fontes, J.C. Fritz, P., Moser, H., Olsson, T., Stripa Project 85-06, SKB Stockholm (1985)Google Scholar
17. Henderson, P., Inorganic Geochemistry, Pergamon Press, London pp 130, (1979)Google Scholar
18. Goldschmidt, V.M., J. Chem. Soc. Lond. p655–673 (1937)Google Scholar
19. Sposito, G., The surface chemistry of soils, Oxford University Press, New York, p129 (1984)Google Scholar
20. Ohnuki, T. and Kozai, N., Radiochimica Acta 66/67, 327331 (1994)Google Scholar