No CrossRef data available.
Article contents
Towards the Design and Implementation of Surface Tethered Quantum Dot-Based Nanosensors
Published online by Cambridge University Press: 01 February 2011
Abstract
Considerable progress has been made towards creating quantum dot (QD) based nanosensors. The most promising developments have utilized QDs as energy donor in fluorescence resonance energy transfer (FRET) processes. Hybrid QD-protein-dye complexes have been assembled to study FRET, to prototype analyte sensing and even to control or modulate QD photoluminescence. In order to transition the benefits of this technology into the field, QD-based nanosensors will have to be integrated into microtiter wells, flow cells, portable arrays and other portable devices. This proceeding describes two examples of QD-protein-dye assemblies. The first investigates the concepts of FRET applied to QD energy donors and the second describes a prototype biosensor employing QDs. We also introduce the first steps towards implementing surface-tethered QD-bioconjugates, which could potentially serve in the design of solid-state QD-based sensing assemblies.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
Footnotes
Electronic address: [email protected]