Published online by Cambridge University Press: 26 February 2011
A four-year survey of high-temperature intermetallic compounds has been aimed at identifying potentially useful structural materials for aerospace and aircraft engine applications. Since the good properties of high strength and stiffness at high temperatures are typically negated by brittleness at ambient temperature, new materials must have roomtemperature toughness or ductility. Screening has been done of 90 binary compounds with 20 different crystal structures, and 130 ternary or higher-order alloys. Testing typically included hardness vs. temperature, elastic modulus determination, and toughness evaluation via a room-temperature chisel test. Four alloy systems, including only two types that are of the simplest structures, showed substantial room-temperature toughness: Al-Ru, Ru-Sc, Ir-Nb, and Ru-Ta. Of these the last and the first are the most promising. Special features of the Ru- Ta (L1o) alloys are their room-temperature impact resistance and high-temperature strength. AIRu (B2) alloys can be tougher than the L1o structures and most are also ductile in compression at room temperature. Alloying experiments with B, Cr, and Sc show beneficial effects on ductility, oxidation resistance, and high-temperature strength.