Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T05:55:10.405Z Has data issue: false hasContentIssue false

Topochemical Strategies for the Formation of Alkali-metal Halide Arrays within Perovskite Hosts

Published online by Cambridge University Press:  26 February 2011

Liliana Viciu
Affiliation:
mviciu@ princeton.edu, University of New Orleans, Department of Chemistry and AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
Xiao Zhang
Affiliation:
[email protected], University of New Orleans, Department of Chemistry and AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
Thomas A. Kodenkandath
Affiliation:
[email protected], University of New Orleans, Department of Chemistry and AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
Valdimir Golub
Affiliation:
[email protected], University of New Orleans, AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
Elisha Josepha
Affiliation:
[email protected], University of New Orleans, Department of Chemistry and AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
John B. Wiley
Affiliation:
[email protected], University of New Orleans, Department of Chemistry and AMRI, 2000 Lakeshore Dr., New Orleans, LA, 70148, United States
Get access

Abstract

Multistep topochemical reactions can be used to construct alkali-metal halide arrays within layered perovskite hosts. Combinations of ion exchange and reductive intercalation (A = Li) or reductive and oxidative intercalation (A = Rb) allow one to prepare the compounds such as (A2Cl)LaNb2O7. These products consist of perovskite blocks separated by double alkali-metal halide layers where the local layer structure is dependent on the size of the alkali cation. Details on the synthesis and structures of these materials are presented, and the general utility of the topochemical strategies used in their preparation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schaak, R. E. and Mallouk, T. E., J. Am. Chem. Soc. 122, 2798 (2000).Google Scholar
2. Hyett, G., Rutt, O. J., Gal, Z. A., Denis, S. G., Hayward, M. A., and Clarke, S. J., J. Am. Chem. Soc. 122, 2798 (2000).Google Scholar
3. Li, R. K. and Greaves, C., Phys. Rev. B 62, 3811 (2000).Google Scholar
4. Sivakumar, T., Ramesha, K., Lofland, S. E., Ramanujachary, R. V., Subbanna, G. N., and Gopalakrishnan, J., Inorg. Chem. 43, 1857 (2004).Google Scholar
5. Thomas, K. A., Lalena, J. N., Zhou, W. L., Carpenter, E. E., Sangregorio, C., Falster, A. U., Simmons, W. B. Jr, O'Connor, C. J., and Wiley, J. B., J. Am. Chem. Soc., 121, 10743 (1999).Google Scholar
6. Viciu, L., Caruntu, G., Royant, N., Koenig, J., Zhou, W. L., Kodenkandath, T. A., and Wiley, J. B. Inorg. Chem. 41, 3385 (2002).Google Scholar
7. Viciu, L., Kodenkandath, T. A., and Wiley, J. B. J. Solid State Chem. (accepted).Google Scholar
8. Zhang, X., Josepha, E., and Wiley, J. B. (manuscript in preparation).Google Scholar
9. Gopalakrishnan, J., Bhat, V., and Raveau, B., Mat. Res. Bull. 22, 413 (1987).Google Scholar
10. Armstrong, A.R., Anderson, P. A., Inorg. Chem. 33 4366 (1994).Google Scholar
11. Larson, A. and Von Dreele, R.B., GSAS: Generalized Structure Analysis System; Los Alamos National Laboratory: Los Alamos, NM, 1994.Google Scholar
12. Viciu, L., Liziard, N., Golub, V., Kodenkandath, T. A., and Wiley, J. B. Mater. Res. Bull. 39, 2147 (2004).Google Scholar
13. Neiner, D., Barrat, C., and Wiley, J. B. (unpublished results).Google Scholar
14. Schaak, R. E. and Mallouk, T. E., Chem. Mater. 14, 1455 (2002).Google Scholar