No CrossRef data available.
Article contents
Titanium Silicidation and Secondary Defect Annihilation in ION Beam Processed Sige Layers
Published online by Cambridge University Press: 15 February 2011
Abstract
The secondary defect annihilation by one- and two-step titanium silicidation in SiGe layers, formed by high dose Ge implantation, has been studied systematically as a function of the Ge fluence, implantation energy, silicide thickness, and silicide process conditions. In all cases the Ti thickness was kept below 20 nm, resulting in very thin Ti silicide layers typically less than 40 nm. The silicide phase was inspected by x-ray diffraction and transmission electron diffraction. Channelling Rutherford backscattering spectrometry and transmission electron microscopy were used to follow the end of range dislocation loop annihilation as a function of the silicide process conditions. The end of range loop annealing and the influence of silicidation is presented in this paper for Ge fluences above 3×1015 cm−2 and energies ranging from 70 keV to 140 keV. A model based on loop coarsening is presented which describes the observed loop annihilation behaviour.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996