Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T15:43:17.883Z Has data issue: false hasContentIssue false

A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Low Hydrogen Concentrations

Published online by Cambridge University Press:  01 February 2011

Oomman K. Varghese
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering 217. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Gopal K. Mor
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering 217. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Maggie Paulose
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering 217. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Craig A. Grimes
Affiliation:
Department of Electrical Engineering, and Department of Materials Science and Engineering 217. Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
Get access

Abstract

A tremendous variation in electrical resistance, from the semiconductor to metallic range, has been observed in titania nanotube arrays at room temperature, ≈25°C, in the presence of low ppm hydrogen gas concentrations (≤ 1000 ppm). The nanotube arrays are fabricated by anodizing titanium foil in an aqueous fluoride containing electrolyte solution. Subsequently, the arrays are annealed in an oxygen ambient, then coated with a 10 nm layer of palladium by evaporation. Electrical contacts are made by sputtering a small (e.g. 1 mm diameter) platinum disk atop the Pd coated nanotube-array. These sensors exhibit a resistance variation of the order of over 107 (1,000,000,000%) in the presence of 1000 ppm hydrogen at 23°C. To the best of our knowledge this dynamic change in electrical resistance the largest known response of any material, to any gas, at any temperature. The sensors demonstrate complete reversibility, repeatability, high selectivity, no drift and wide dynamic range. The nanoscale geometry of the nanotubes, in particular the points of tube-to-tube contact, is believed to be responsible for the outstanding hydrogen gas sensitivities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, P., Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet, Cambridge, Massachusetts (2001).Google Scholar
2. Chtristofides, C. and Mandelis, A., J. Appl. Phys., 68, R1 (1990).Google Scholar
3. Ruths, P.F., Askok, S., Fonash, S.J. and Ruths, J.M., IEEE Trans. Electr. Dev., ED–28, 1003 (1981).Google Scholar
4. Schalwig, J., Muller, G., Karrer, U., Eickhoff, M., Ambacher, O., Stutzmann, M., Gorgens, L. and Dollinger, G., Appl. Phys. Lett., 80, 1222 (2002).Google Scholar
5. Roy, S., Jacob, C., Lang, C. and Basu, S., J. Electrochem. Soc., 150, H135 (2003).Google Scholar
6. Cheng, S.-Y., Mater. Chem. Phys., 78, 525 (2002).Google Scholar
7. Butler, M.A., J. Electrochem. Soc., 138, L46 (1991).Google Scholar
8. Sekimoto, S., Nakagawa, H., Okazaki, S., Fukuda, K., Asakura, S., Shigemori, T., and Takahashi, S., Sens. Actuators, B 66, 142 (2000).Google Scholar
9. Sutapun, B., Tabib-Azar, M. and Kazemi, A., Sens. Actuators, B 60, 27 (1999).Google Scholar
10. Matsumiya, M., Shin, W., Izu, N. and Murayama, N., Sens. Actuators, B 93, 309 (2003).Google Scholar
11. Katti, V.R., Debnath, A.K., Gadkari, S.C., Gupta, S.K. and Sahni, V.C., Sens. Actuators, B 84, 219 (2002).Google Scholar
12. Luo, R.X., Chen, L.H., Chen, A.F. and Liu, C.C., Sci. China Ser. A, 34, 1500 (1991).Google Scholar
13. Maffei, N. and Kuriakose, A.K., Sens. Actuators, B 56, 243 (1999).Google Scholar
14. Katahira, K., Matsumoto, H., Iwahara, H., Koide, K. and Iwamoto, T., Sens. Actuators, B 73, 130 (2001).Google Scholar
15. Lu, G., Miura, N. and Yamazoe, N., Sens. Actuators, B 35, 130 (1996).Google Scholar
16. Miura, N., Harada, T., Shimizu, Y. and Yamazoe, N., Sens. Actuators, B 1, 125 (1990).Google Scholar
17. Lundstrom, I., Shivaraman, S., Svensson, C.S. and Lundkvist, L., Appl. Phys. Lett., 26, 55 (1975).Google Scholar
18. Miura, N., Harada, T., Yoshida, N., Shimizu, Y. and Yamazoe, N., Sens. Actuators, B 25, 499 (1995).Google Scholar
19. Fomenko, S., Gumenjuk, S., Podlepetsky, B., Chuvashov, V. and Safronkin, G., Sens. Actuators, B 10, 7 (1992).Google Scholar
20. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A., Adv. Mater., 15, 624 (2003).Google Scholar
21. Hyodo, T., Nishida, N., Shimizu, Y. and Egashira, M., Sens. Actuators, B 83, 209 (2002).Google Scholar
22. Chaudhary, V.A., Mulla, I.S. and Vijayamohanan, K., Sens. Actuators, B 55, 154 (1999).Google Scholar
23. Fonash, S.J., Li, Z. and O'Leary, M.J., J. Appl. Phys., 58, 4415 (1985).Google Scholar
24. Reddy, C.V.G. and Manorama, S.V., J. Electrochem. Soc., 147, 390 (2000).Google Scholar
25. Basu, S. and Dutta, A., Sens. Actuators, B 22, 83 (1994).Google Scholar
26. Nakagawa, H., Yamamoto, N., Okazaki, S., Chinzei, T. and Asakura, S. Sens. Actuators, B 93, 468 (2003).Google Scholar
27. Yamamoto, N., Tonomura, S., Matsuoka, T. and Tsubomura, H., Surf. Sci., 92, 400 (1980).Google Scholar
28. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A., Sens. Actuators, B 93, 338 (2003).Google Scholar
29. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C., J. Mater. Res., 16, 3331 (2001).Google Scholar
30. Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A., J. Mater. Res., 18, 2588 (2003).Google Scholar
31. Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A. and Dickey, E.C., J. Mater. Res., 18, 156 (2003).Google Scholar
32. Basu, S. and Dutta, A., Mater. Chem. Phys., 47, 93 (1997).Google Scholar
33. Zuttel, A., Nutzendadel, Ch., Schmid, G., Emmenegger, Ch., Sudan, P. and Schlapbach, L., Appl. Surf. Sci., 162, 571 (2000).Google Scholar
34. Michaelson, H.B., J. Appl. Phys., 48, 4729 (1977).Google Scholar
35. Henrich, V.E. and Cox, P.A., The Surface Science Of Metal Oxides, Cambridge University Press, New York, (1994).Google Scholar
36. Huang, W., Zhai, R. and Bao, X., Appl. Surf. Sci., 158, 287 (2000).Google Scholar
37. Kobayashi, H., Kishimoto, K. and Nakato, Y., Surf. Sci., 306, 393 (1994).Google Scholar
38. Roland, U., Braunschweig, T. and Roessner, F., J. Mol. Catal., A: Chem. 127, 61 (1997).Google Scholar