Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T02:39:25.950Z Has data issue: false hasContentIssue false

TiO2 Nanotube Arrays by using ZnO Nanorod Template through Liquid Phase Deposition for Organic- Inorganic Hybrid Photovoltaic Cells

Published online by Cambridge University Press:  15 March 2011

Thitima Rattanavoravipa
Affiliation:
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
Takashi Sagawa
Affiliation:
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
Susumu Yoshikawa
Affiliation:
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
Get access

Abstract

TiO2 nanotube arrays had been selected as electron transport material incorporate with P3HT:PCBM blended polymer to fabricate the hybrid organic-inorganic solar cells. Well aligned TiO2 nanotube arrays has been synthesized though the liquid phase deposition by using ZnO nanorod arrays as templates. Three types of dyes (viz. NKX-2677, D149, N719) were adsorbed onto the surface of TiO2 nanotube arrays to increase the interfacial contacts between the organic polymer and inorganic metal oxide. Surface modification with NKX-2677 exhibited remarkable improvement of the cell efficiencies in terms of current density, open circuit voltage, and fill factor as compared with those of other dyes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, S.-S., Na, S.-I., Jo, J., Tae, G. and Kim, D.-Y., Advance Materials 19, 4410 (2007).Google Scholar
2. Na, S.-I., Kim, S.-S., Jo, J., Lee, K.-S., Park, S.-J. and Kim, D.-Y., Journal of Photochemistry and Photobiology A: Chemistry 194, 161 (2008).Google Scholar
3. Gebeyehu, D., Brabec, C. J., Sariciftci, N. S., Vangeneugden, D., Kiebooms, R., Vanderzande, D., Kienberger, F. and Schindler, H., Synthetic Metals 125, 279 (2001).Google Scholar
4. Lin, Y.-J., Wang, L. and Chiu, W.-Y., Thin Solid Films 511–512, 199 (2006).Google Scholar
5. Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P., Nature Materials 4, 455459 (2005).Google Scholar
6. Zhu, K., Neale, N.R., Miedaner, A. and Frank, A. J., Nano Letter 7, 69 (2007).Google Scholar
7. Lee, K.-M., Suryanarayanan, V. and Ho, K.-C., Solar Energy Materials and Solar Cells 91, 1416 (2007).Google Scholar
8. Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V. and Grätzel, M., Journal of American Ceramic Society 80, 3157 (1997).Google Scholar
9. Kudo, N., Honda, S., Shimazaki, Y., Ohkita, H. and Ito, S., Apply Physics Letter 90, 183513 (2007).Google Scholar
10. Goh, C., Scully, S. R., and McGehee, M. D., Journal of Apply Physics 101, 114503 (2007).Google Scholar
11. Lee, J.H., Leu, I.C., Hsu, M.C., Chung, Y.W. and Hon, M. H., Journal Physics Chemistry B 109, 13056 (2005).Google Scholar
12. Wei, Q., Hirota, K., Tajima, K. and Hashimoto, K., Chemistry of Materials 18, 5080 (2006).Google Scholar
13. Rattanavoravipa, T., Sagawa, T. and Yoshikawa, S., Solid State Electronic 53, 176 (2009).Google Scholar