Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T03:00:45.789Z Has data issue: false hasContentIssue false

Time-resolved Photoconductivity as a Probe of Carrier Transport in Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Steve Reynolds*
Affiliation:
[email protected], Forschungszentrum Juelich, Institute of Photovoltaics, Leo Brandt Str., Juelich, NRW, D-52425, Germany
Get access

Abstract

The use of transient photoconductivity techniques in the investigation of carrier transport in microcrystalline silicon is described. Results are presented which highlight variations in transport parameters such as carrier mobility and density of states with structure composition. Hole mobility is significantly enhanced by crystalline content in the film of 10% or less. The density of states inferred from transport measurements parallel to and at right angles to the direction of film growth differ somewhat, suggesting that transport may be anisotropic.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shah, A.V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U. and Droz, C., Solar Energy Materials & Solar Cells 78, 469 (2003).Google Scholar
2. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B. and Wagner, H., Solar Energy Materials & Solar Cells 62, 97 (2000).Google Scholar
3. Lee, C-H., Sazonov, A. and Nathan, A., Appl. Phys. Lett. 86, 222106 (2005), and by the same authors, to appear in J. Non-Cryst. Solids (2006).Google Scholar
4. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Phil. Mag. A 77, 1447 (1998).Google Scholar
5. Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys. 81, 7376 (1997).Google Scholar
6. Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S. and Günes, M., IEE Proc. CDS 150, 300 (2003).Google Scholar
7. Sendova-Vassileva, M., Finger, F., Klein, S. and Lambertz, A., J. Optoel. Adv. Mat. 7, 481 (2005).Google Scholar
8. Smirnov, V., Reynolds, S., Main, C., Finger, F. and Carius, R., J. Non-Cryst. Sol. 338–340, 421 (2004).Google Scholar
9. Klein, S., Finger, F., Carius, R., Dylla, T., Rech, B., Grimm, M., Houben, L. and Stutzmann, M., Thin Solid Films 430, 202 (2003).Google Scholar
10. Yan, B., Yue, G., Owens, J.M., Yang, J. and Guha, S., Appl. Phys. Lett. 85, 1925 (2004).Google Scholar
11. Shimakawa, K., J. Mat. Sci.: Mat. El. 15, 63 (2004).Google Scholar
12. Marshall, J.M., Philos. Mag. 36, 959 (1977).Google Scholar
13. Koèka, J., Fejfar, A., Stuchlíková, H., Stuchlík, J., Fojtík, P., Mates, T., Rezek, B., Švrèek, V. and Pelant, I., Solar Energy Materials & Solar Cells 78, 493 (2003).Google Scholar
14. Tiedje, T., in: Joannopoulos, J.D., Lucovsky, G. (Eds.), Hydrogenated Amorphous Silicon II, Springer-Verlag, New York, 1984 (pp261300).Google Scholar
15. Brinza, M., Willekens, J., Benkhadir, M.L., Emelianova, E.V. and Adriaenssens, G.J., J. Mat. Sci.: Mat. El. 16, 703 (2005).Google Scholar
16. Main, C., Russell, R., Berkin, J. and Marshall, J.M., Phil. Mag. Lett. 55, 189 (1987).Google Scholar
17. Wang, Q., Antoniadis, H., Schiff, E.A. and Guha, S., Phys. Rev. B 47, 9435 (1993).Google Scholar
18. Seynhaeve, G.F., Barclay, R.P., Adriaenssens, G.J. and Marshall, J.M., Phys. Rev. B 39, 10196 (1989).Google Scholar
19. Main, C., MRS Symp. Proc. 467, 167 (1997).Google Scholar
20. Ogawa, N., Nagase, T. and Naito, H., J. Non-Cryst. Sol. 266, 367 (2000).Google Scholar
21. Mai, Y., Klein, S., Carius, R., Wolff, J., Lambertz, A., Finger, F. and Geng, X., J. Appl. Phys. 97, 114913 (2005).Google Scholar
22. Wyrsch, N., Goerlitzer, M., Beck, N., Meier, J. and Shah, A., MRS Symp. Proc. 420, 801 (1996).Google Scholar
23. Serin, M., Harder, N. and Carius, R., J. Mat. Sci.: Mat. El. 14 733, (2003).Google Scholar
24. Fejfar, A., Beck, N., Stuchlíková, H., Wyrsch, N., Torres, P., Meier, J., Shah, A. and Koèka, J., J. Non-Cryst. Solids 227–230, 1006 (1998).Google Scholar
25. Dylla, T., Finger, F. and Schiff, E.A., Appl. Phys. Lett. 87, 032103 (2005).Google Scholar
26. Brinza, M., Adriaenssens, G.J. and Cabarrocas, P.R.I., Thin Solid Films 427, 123 (2003).Google Scholar
27. Brinza, M., Adriaenssens, G.J., Iakoubovskii, K., Stesmans, A., Kessels, W.M.M., Smets, A.H.M. and Sanden, M.C.M. van de, J. Non-Cryst. Solids 299, 420 (2002).Google Scholar
28. Main, C. and Brüggemann, R., in Electronic and Optoelectronic Materials for the 21st Century, eds. Marshall, J.M. et al, World Scientific, Singapore, 1993, p279.Google Scholar
29. Finger, F., Müller, J., Malten, C. and Wagner, H., Philos. Mag. B 77, 805 (1998).Google Scholar
30. Reynolds, S., Main, C., Webb, D.P. and Rose, M.J., Philos. Mag. B 80, 547 (2000).Google Scholar
31. Beck, N., Torres, P., Fric, J., Remes, Z., Poruba, A., Stuchlikova, HA., Fejfar, A., Wyrsch, N., Vanecek, M., Kocka, J. and Shah, A., MRS Symp. Proc. 452, 761 (1997).Google Scholar
32. Unold, T., Brüggemann, R., Kleider, J.P. and Longeaud, C., J. Non-Cryst. Sol. 266–269, 325 (2000).Google Scholar
33. Hattori, K., Musa, Y., Murakami, N., Deguchi, N. and Okamoto, H., J. Appl. Phys. 94, 5071 (2003).Google Scholar
34. Finger, F., Klein, S., Dylla, T., Neto, A.L. Baia, Vetterl, O. and Carius, R., MRS Symp. Proc. 715, A16.3.1 (2002).Google Scholar
35. Antoniadis, H. and Schiff, E.A., Phys. Rev. B 44, 3627 (1991).Google Scholar
36. Koèka, J., Šipek, E., Štika, E., Curtins, H., Juška, G., J. Non-Cryst. Solids 114, 336 (1989).Google Scholar