Published online by Cambridge University Press: 22 February 2011
Laser heating of crystalline silicon is investigated with 10 ns laser pulses at 532 nm Raman spectra below the transition threshold show distinct shifts to low frequencies. The absence of line shifts at higher energy is due to a time resolution artifact. Temperatures evaluated from frequency resolved anti-Stokes/Stokes ratios are in agreement with the temperature estimated from line shifts, and provide clear evidence that the surface reaches the melting point. These conclusions are confirmed by independent measurements of the thermal emission. Time-resolved pyrometry also provides the temperature evolution of the liquid phase.