Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T23:17:32.600Z Has data issue: false hasContentIssue false

Time Dependent Debonding of Aluminum/Alumina Interfaces under Cyclic and Static Loading

Published online by Cambridge University Press:  21 March 2011

J. J. Kruzic
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
J. M. McNaney
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
R. M. Cannon
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
R. O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

The structural integrity of oxide/metal interfaces is important in many applications. While most attention has focused on the debonding of oxide/metal interfaces by conducting strength and fracture toughness tests, very few investigations have looked at time dependant failure of interfaces under cyclic or static loading. Tests have been conducted on sandwich specimens consisting of 5 - 100 micron thick aluminum layers bonded between either polycrystalline or single crystal Al2O3 to determine cyclic fatigue-crack growth, as well as static loaded moisture- assisted crack-growth, properties of Al/Al2O3 interfaces. Under cyclic loading, crack growth was observed to occur predominantly by interfacial debonding, but was also observed to make excursions into the Al2O3. Static loading in a moist environment also caused interfacial cracks to deviate into the Al2O3 or alternatively to arrest. Due to the poor crack growth resistance of the Al2O3, cracks leaving the interface grew at faster rates than those at the interface. Trends in crack trajectories and crack growth rates are explained in terms of the degree of plastic constraint in the aluminum layer, the modulus mismatch, and the effects of environmental mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McNaney, J. M., Cannon, R. M. and Ritchie, R. O., Int. J. Fract., 66, 227240 (1994).Google Scholar
2. Dalgleish, B. J., Trumble, K. P. and Evans, A. G., Acta Metall., 37(7), 19231931 (1989).Google Scholar
3. Korn, D., Elssner, G., Fischmeister, H. F. and Rühle, M., Acta Metall. Mater., 40, S355–S360 (1992).Google Scholar
4. Elssner, G., Suga, T. and Turwitt, M., J. De Physique, 46, C4597 (1985).Google Scholar
5. Evans, A. G. and Lu, M. C., Acta Metall., 34(8), 16431655 (1986).Google Scholar
6. Evans, A. G., Dalgleish, B. J., He, M. and Hutchinson, J. W., Acta Metall., 37(12), 32493254 (1989).Google Scholar
7. Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater., 40, S295–S306 (1992).Google Scholar
8. Reimanis, I. E., Dalgleish, B. J. and Evans, A. G., Acta Metall. Mater., 39(12), 31333141 (1991).Google Scholar
9. Shih, C. F. and Asaro, R. J., J. App. Mech., 55, 299316 (1988).Google Scholar
10. Hutchinson, J. W. and Suo, Z., Adv. App. Mech., 29, 63191 (1992).Google Scholar
11. Turner, M. R. and Evans, A. G., Acta Mater., 44(3), 863871 (1996).Google Scholar
12. Dalgleish, B. J., Lu, M. C. and Evans, A. G., Acta Metall., 36(8), 20292035 (1988).Google Scholar
13. Rice, J. R., J. App. Mech., 55, 98103 (1988).Google Scholar
14. Varias, A. G., Suo, Z. and Shih, C. F., J. Mech. Phys. Solids, 39(7), 963986 (1991).Google Scholar
15. Dalgleish, B. J., Saiz, E., Tomsia, A. P., Cannon, R. M. and Ritchie, R. O., Scripta Metall. Mater., 31(8), 11091114 (1994).Google Scholar
16. Shaw, M. C., Marshall, D. B., Dalgleish, B. J., Dadkhah, M. S., He, M. Y. and Evans, A. G., Acta Metall. Mater., 42(12), 40914099 (1994).Google Scholar
17. McNaney, J. M., Cannon, R. M. and Ritchie, R. O., Acta Mater., 44(12), 47134728 (1996).Google Scholar
18. Gaudette, F., Suresh, S. and Evans, A. G., Metall. Mater. Trans., 30A, 763769 (1999).Google Scholar
19. Cannon, R. M., Dalgleish, B. J., Dauskardt, R. H., Oh, T. S. and Ritchie, R. O., Acta Metall. Mater., 39(9), 21452156 (1991).Google Scholar
20. Oh, T. S., Cannon, R. M., Rödel, J., Glaeser, A. M. and Ritchie, R. O., in Interfaces in Polymer, Ceramic, and Metal Matrix Composites, ed. Ishida, H. (Elsevier, 1988) pp. 567581.Google Scholar
21. Reimanis, I. E., Dalgleish, B. J., Brahy, M., Rühle, M. and Evans, A. G., Acta Metall. Mater., 38(12), 26452652 (1990).Google Scholar
22. Oh, T. S., Cannon, R. M. and Ritchie, R. O., J. Am. Ceram. Soc., 70(12), C352 (1987).Google Scholar
23. Card, J. C., Cannon, R. M., Dauskardt, R. H. and Ritchie, R. O., in Joining and Adhesion of Advanced Inorganic Materials, ed. Carim, A. H., Schartz, D. S., Silberglitt, R. S. and Loehman, R. E. (MRS, 1993) pp. 109116.Google Scholar
24. Gilbert, C. J., Han, Y. S., Kim, D. K. and Ritchie, R. O., Ceram. Inter., 26, 721725 (2000).Google Scholar
25. Ritchie, R. O. and Yu, W., in Small Fatigue Cracks, ed. Ritchie, R. O. and Lankford, J. (TMS-AIME, 1986) pp. 167189.Google Scholar
26. Dauskardt, R. H., James, M. R., Porter, J. R. and Ritchie, R. O., J. Am. Ceram. Soc., 75(4), 759771 (1992).Google Scholar
27. Freiman, S. W., McKinney, K. R. and Smith, H. L., in Symposium of Fracture Mechanics of Ceramics, ed. Bradt, R. C., Hasselmann, D. P. H. and Lange, F. F. (Plenum, 1974) pp. 659676.Google Scholar