Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:52:00.829Z Has data issue: false hasContentIssue false

Time and Space Evolution of Emitting Carbon Nanoparticles – Correlation with the Formation of Fullerenes and Carbon Nanotubes –

Published online by Cambridge University Press:  15 March 2011

Shinzo Suzuki
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Rahul Sen
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Hirofumi Yamaguchi
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Toshinobu Ishigaki
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Yohsuke Ohtsuka
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Yohji Achiba
Affiliation:
Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Hiromichi Kataura
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, JAPAN
Get access

Abstract

The temporal and spatial evolution of emitting carbon nanoparticles were investigated using a laser furnace apparatus combined with a high-speed video camera. An apparent increase in the blackbody emission intensity at Δt > 400 [.proportional]sec after laser vaporization of a graphite rod was clearly recognized. Also, it was found that this increasing tendency corresponds well to that of the fullerene yield, where fullerene species was obtained as sublimed carbon material using in situ sublimation method. These findings suggest that a certain exothermic process related to the formation of C60, other higher fullerenes, and carbon nanotubes should occur at Δt > 400 νsec inside the furnace.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krätschmer, W., Lamb, L., Fostiropoulos, K., and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
2. Chai, Y., Guo, T., Jin, C. M., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L. H., Alford, J. M., and Smalley, R. E., J. Phys. Chem., 95, 7564 (1991).Google Scholar
3. Wakabayashi, T., Kasuya, D., Shiromaru, H., Suzuki, S., Kikuchi, K., and Achiba, Y., Z. Phys. D40, 414(1997).Google Scholar
4. Rohlfing, E. R., J. Chem. Phys., 89, 6103 (1988).Google Scholar
5. Puretzky, A.A., Geohegan, D.B., Haufler, R.E., Hettich, R.L., Zheng, X.-Y., and Compton, R.N., AIP Conf. Proc., 288, 365 (1994).Google Scholar
6. Mitzner, R. and Campbell, E.E.B., J. Chem. Phys., 103, 2445(1995).Google Scholar
7. Neogi, A. and Thareja, R., Physics of Plasmas, 6, 365(1999).Google Scholar
8. Ishigaki, T., Suzuki, S., Kataura, H., Krätschmer, W., and Achiba, Y., Appl. Phys., A70, 121 (2000).Google Scholar
9. Kasuya, D., Ishigaki, T., Suganuma, T., Ohtsuka, Y., Suzuki, S., and Achiba, Y., Eur. J. Phys. D9, 355 (1999).Google Scholar
10. Kokai, F., Takahashi, K., Yudasaka, M., Yamada, R., Ichihashi, T., and Iijima, S., J. Phys. Chem. B103, 4346 (1999).Google Scholar
11. Ishigaki, T., Ph.D. Thesis, Tokyo Metropolitan University (2000).Google Scholar
12. Suzuki, S., Yamaguchi, H., Ishigaki, T., Sen, R., Kataura, H., Krätschmer, W., and Achiba, Y., Eur. Phys. J. D, submitted (2000).Google Scholar
13. Sen, R., Ohtsuka, Y., Ishigaki, T., Kasuya, D., Suzuki, S., Kataura, H., and Achiba, Y., Chem. Phys. Lett., 332, 467 (2000).Google Scholar
14. Puretzky, A. A., Geohegan, D. B., Fan, X., and Pennycook, S. J., Appl. Phys., A70, 153 (2000).Google Scholar
15. Kataura, H., Kumazawa, Y., Maniwa, Y., Ohtsuka, Y., Sen, R., Suzuki, S., and Achiba, Y., Carbon, 38,1691 (2000).Google Scholar