Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:06:17.589Z Has data issue: false hasContentIssue false

Tilt Boundaries In BCC Metals:Comparison of Results Using Different Interatomic Interactions

Published online by Cambridge University Press:  26 February 2011

S. M. Foiles
Affiliation:
Theoretical Division, Sandia National Laboratories, Livermore, CA 94551–0969
M. S. Daw
Affiliation:
Theoretical Division, Sandia National Laboratories, Livermore, CA 94551–0969
R. B. Phillips
Affiliation:
Theoretical Division, Sandia National Laboratories, Livermore, CA 94551–0969
Get access

Abstract

Two classes of interatomic interactions, the embedded atom method and the model generalized pseudopotential theory are used to calculate the structure of tilt boundaries in bcc metals.These interactions differ in the inclusion of explicitlyangular dependent interactions. The results show that these different models of the interactions can lead to qualitatively different predictions for the atomic structure of the boundary. The applicability of the embedded atom method to bcc transition metals is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984);CrossRefGoogle Scholar
1a. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
2 Finnis, M. W. and Sinclair, J. E., Philos. Mag. B 50, 45 (1984)CrossRefGoogle Scholar
3 Moriarty, J. A., Phys. Rev. B 42, 1609 (1990);Google Scholar
3a.and references therein.Google Scholar
4 Foiles, S. M., in Surface Segregation Phenomena, edited by Dowben, P. A. and Miller, A. (CRC Press, Boca Raton, 1990);Google Scholar
4a. Daw, M. S., in Reconstruction of Solid Surfaces, edited by Christmann, K. and Heinz, K., (Springer-Verlag, Berlin, in press).Google Scholar
5 Johnson, R. A. and Oh, D. J., J. Mater. Research 4, 1195 (1989).CrossRefGoogle Scholar
6 Eridon, J. and Rao, S., Philos. Mag. Lett. 57, 31 (1989).Google Scholar
7 Adams, J. B. and Foiles, S. M., Phys. Rev. B 41, 3316 (1990).Google Scholar
8 see for example, Rebonato, R. and Broughton, J. Q., Philos. Mag. Lett. 55, 225 (1987);Google Scholar
8a. Rebonato, R.,Welch, D. O., Hatcher, R. D., and Billelo, J. C., Philos. Mag. A 55, 655 (1987);Google Scholar
8b. Harder, J. M. and Bacon, D. J., Philos. Mag. A 54, 651 (1987);Google Scholar
8c. Matthai, C. C. and Bacon, D. J., Philos. Mag. A 52,1 (1985);Google Scholar
8d. Ackland, G. J. and Thetford, R., Philos. Mag. A 56, 15 (1987).Google Scholar
9 Jacobsen, K. W., Norskov, J. K., Puska, M. J., Phys. Rev. B 35, 7423, (1987).Google Scholar
10 Daw, M. S., Phys. Rev. B 39, 7441 (1989).Google Scholar
11 Foiles, S. M., Surf. Sci. 191, L779 (1987).Google Scholar
12 Foiles, S. M., Phys. Rev. B 32, 3409 (1985).Google Scholar
13 The expression for the vacancy formation energy in terms of u(R) is only approximate. It ignores second order and higher contributions from the change in the electron density at the atoms adjacent to the vacancy. These higher order contributions typically make only a small (< 0.1 eV)contribution to the vacancy formation energy.Google Scholar
14 see for example, Baskes, M. I. and Melius, C. F., Phys. Rev. B 20, 3197 (1979).Google Scholar
15 Work is in progress to incorporate the density dependence of the multi-ion interactions; J. A.Moriarty, private communication.Google Scholar
16 Moriarty, J. A., private communication.Google Scholar