Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:07:35.309Z Has data issue: false hasContentIssue false

Tight Binding KKR - Application to CoCu(001): Electronic Structure and Transport

Published online by Cambridge University Press:  15 February 2011

P. Zahn
Affiliation:
Institut für Theoretische Physik, TU Dresden, D-01062 Dresden, Germany
I. Mertig
Affiliation:
Institut für Theoretische Physik, TU Dresden, D-01062 Dresden, Germany
R. Zeller
Affiliation:
IFF, Forschungszentrum Jülich, D-52425 Jülich, Germany
P.H. Dederichs
Affiliation:
IFF, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Starting from a tight binding formulation of the KKR (Korringa-Kohn-Rostocker) Green function method we developed a self consistent band structure code. By using a reference system containing repulsive muffin tin potentials we obtain structure constants which decay exponentially with distance. In the case of multilayered systems the numerical effort scales linearly with the number of monolayers in a unit cell. We report about calculations of CoCu(001) systems. With our method we are able to consider the electronic structure, the interlayer exchange coupling, and the transport properties (conductivity, giant magnetoresistance = GMR) on an equal footing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Anderson, O.K., Postnikov, A.V., and Savrasov, S.Y., Mat. Res. Soc. Proc. 253 (1992)Google Scholar
[2] Zeller, R., Dederichs, P.H., Újfalussy, B., Szunyogh, L., and Weinberger, P., Phys. Rev. B 52, 8807 (1995).Google Scholar
[3] The problem is discussed in Golub, G. und Ortega, J.M., Scientific Computing: An Introduction with Parallel Computing, Academic Press, Boston 1992, p. 223225 and is similar to that of the inversion of a block-tridiagonalmatrix.Google Scholar
[4] Zeller, R., preprint (1996)Google Scholar
[5] Dederichs, P.H. and Zeller, R., in Festkörperprobleme (Advances in Solid States Physics), Volume XXI, pp. 243269, Vieweg, Braunschweig 1981 Google Scholar
[6] Gijs, M.A.M., Giesbers, J.B., Johnson, M.T., Jungblut, R.M., Reinders, A., Lenc-zowski, S.K.J., Van Gansewinkel, R.M.J., and Van de Veerdonk, R.J.M., J. Mag. Mag. Mat. 153, 333340 (1995)Google Scholar