Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T14:36:31.789Z Has data issue: false hasContentIssue false

Three-Dimensional Photoreorientation of Self-Organized Azobenzene Chromophores in Liquid Crystalline Polymer Films

Published online by Cambridge University Press:  10 February 2011

M. Han
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, [email protected]
S. Morino
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, [email protected]
K. Ichimura
Affiliation:
Research Laboratory of Resources Utilization, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, [email protected]
Get access

Abstract

Photo-induced reorientational behavior of films of a liquid crystalline polymer with azobenzene side chains was studied by means of UV-Vis absorption spectroscopy and Fourier transform infrared transmission and reflection-absorption spectroscopy. The incident directions of light for photoisomerization played a critical role in the photocontrol of out-of-plane (three-dimensional) orientation of the azobenzenes in films. Tilted directions of the azobenzene residues were evaluated by using polarized UV-Vis absorption spectra. Photoreoriented states of azobenzene chromophores including photodichroism and tilted alignment were enhanced by successive annealing of photoirradiated films at temperatures close to the glass transition temperature of the polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eich, M. and Wendorff, J. H., Makromol. Chem. Rapid Commun. 8, 467 (1987).Google Scholar
2 Anderle, K., Birenheide, R., Werner, M. J. A., and Wendorff, J. H., Liq. Cryst. 9, 691 (1991)Google Scholar
3 Ichimura, K., Hayashi, Y., Kawanishi, Y, Seki, T., Tamaki, T., and Ishizuki, N., Langmuir 9, 857 (1993).Google Scholar
4 Natansohn, A., Rochon, P., PNzolet, M., Audet, P., Brown, D., and To, S., Macromolecules 27, 2580 (1994).Google Scholar
5 Ichimura, K., Y Suzuki, Seki, T., Hosoki, A., and Aoki, K., Langmuir 4, 1214 (1988).Google Scholar
6 Aoki, K., Seki, T., Suzuki, Y, Tamaki, T., Hosoki, A., and Ichimura, K., Langmuir 8, 1007 (1992).Google Scholar
7 Kawai, T., Umemura, J., and Takenaka, T., Langmuir 6, 672 (1990).Google Scholar
8 Ichimura, K., Suzuki, Y, Seki, T., Kawanishi, Y., and Aoki, K., Makromol. Chem. Rapid Commun. 10, 5 (1989).Google Scholar
9 Sagiv, J., Isr. J. Chem. 18, 346 (1979).Google Scholar
10 Sagiv, J., J. Am. Chem. Soc. 102, 92 (1980).Google Scholar
11 Chollet, P A., Messier, J., and Rosilio, C., J. Chem. Phys. 64, 1042 (1976).Google Scholar
12 Rabolt, J. F, Burns, F. C., Schlotter, N. E., and Swalen, J. D., J. Chem. Phys. 78, 946 (1983).Google Scholar
13 Umemura, J., Tamaka, T., Kawai, T., and Takenaka, T., J. Phys. Chem. 94, 62 (1990).Google Scholar
14 Ichimura, K., Morino, S., and Akiyama, H., Appl. Phys. Lett. 73, 921 (1998).Google Scholar
15 Ichimura, K., Han, M., and Morino, S., Chem. Lett. 85 (1999).Google Scholar
16 Robin, M. B. and Simpson, W T., J. Chem. Phys. 36, 580 (1962).Google Scholar
17 Uznaski, P, Kryszewski, M., and Thustrup, E. W., Spectrochem. Acta 46A, 23 (1990)Google Scholar
18 Allara, D. L. and Swalen, J. D., J. Phys. Chem. 86, 2700 (1982).Google Scholar
19 Katayama, N., Ozaki, Y., Seki, T., Tamaki, T., and Iriyama, K., Langmuir 10, 1898 (1994).Google Scholar