Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T21:54:30.373Z Has data issue: false hasContentIssue false

Three-Dimensional Modeling of the High Pressure Organometallic Chemical Vapor Deposition of InN using Trimethylindium and Ammonia

Published online by Cambridge University Press:  21 March 2011

Sonya D. McCall
Affiliation:
Spelman College, Dept. of Chemistry, Atlanta, Georgia 30314, USA
Klaus J. Bachmann
Affiliation:
North Carolina State University, Raleigh, North Carolina 27606, USA
Get access

Abstract

A physico-chemical model of the High Pressure Organometallic Chemical Vapor Deposition (HPOMCVD) process that describes three dimensional transport phenomena as well as gas-phase and surface reactions underlying the growth of compound semiconductors is presented. A reduced-order model of the Organometallic Chemical Vapor Deposition of indium nitride (InN) from trimethylindium In(CH3)3 or TMI and ammonia (NH3) at elevated pressures has been developed and tested using the computational fluid dynamics code, CFD-ACE+. The model describes the flow dynamics coupled to chemical reactions and transport in the flow channel of the Compact Hard Shell Reactor, as a function of substrate temperature, total pressure and centerline flow velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. MacChesney, J., Bridenbough, P. M. and O'Connor, P. B., Mater. Res. Bull. 5 (1970) 783.10.1016/0025-5408(70)90028-0Google Scholar
2. Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Palosz, B., Porowski, S. and Zinn, P., J. Phys. Chem. Solids. 59 (1998) 289.10.1016/S0022-3697(97)00222-9Google Scholar
3. Bachmann, K. J., McCall, S., LeSure, S., Sukidi, N. and Wang, F., J. of Japan Society of Microgravity Applications, 15 (1998) 436.Google Scholar
4. CFD-ACE User's Manual, Version 6.4 (CFDRC, Huntsville, AL, USA, 2000).Google Scholar
5. Bachmann, K. J., Banks, H. T., Hopfner, C., Kepler, G. M., LeSure, S., McCall, S. D., Scroggs, J. S., Mathematical and Computer Modelling, 29 (1999) 65.10.1016/S0895-7177(99)00071-0Google Scholar
6. Dietz, N., McCall, S., Bachmann, K.J., “Real-time optical monitoring of flow kinetics and gas phase reactions under high-pressure OMCVD conditions”, Proceedings of the Microgravity Conference 2000, Huntsville, AL. June 6-8, NASA/CP-2001-210827, (2001) 176.Google Scholar
7. Byrd, R. B., Stewart, W. E., Lightfoot, E. N., Transport Phenomena. New York, NY: John Wiley & Sons, 1960.Google Scholar
8. Cardelino, B. H., Moore, C. E., Cardelino, C. A., Frazier, D. O., and Bachmann, K. J., J. Phys. Chem. A 105 (2000) 849.10.1021/jp0013558Google Scholar
9. Buchan, N. I. and Jasinski, J. M., J. of Crystal Growth 106 (1988) 227.10.1016/0022-0248(90)90068-VGoogle Scholar
10. Jacko, M. G. and Price, S. J. W., Can. J. chem. 42 (1964) 1198.10.1139/v64-183Google Scholar
11. Haigh, J. and O'Brien, S., J. Crystal Growth 68 (1984) 550.10.1016/0022-0248(84)90463-9Google Scholar
12. Cardelino, B. H., Cardelino, C. A., Frazier, D. O., Krishnan, A., Lowry, S., Moore, C., Zhou, N., and Bachmann, K. J., Proc. SPIE 3625 (1999) 447.10.1117/12.356903Google Scholar
13. Bachmann, K. J., Cardelino, B. H., Moore, C. E., Cardelino, C. A., Sukidi, N., and McCall, S., In Situ Process Diagnostics and Modelling. Symposium. Materials Research Society, Warrendale, PA (1999) 59.Google Scholar
14. Kenner, R. D., Rohrer, F. and Stuhl, F., J. Chem. Phys. 86(4) (1987) 2036.10.1063/1.452153Google Scholar