Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T07:42:28.311Z Has data issue: false hasContentIssue false

Three Synthesis Routes of Single-crystalline PbS Nanowires and Their Electrical Transport Properties

Published online by Cambridge University Press:  01 February 2011

So Young Jang
Affiliation:
[email protected], Korea University, Chemistry, seoul, Korea, Republic of
Yun Mi Song
Affiliation:
[email protected], Korea University, Chemistry, seoul, Korea, Republic of
Han Sung Kim
Affiliation:
[email protected], Korea University, chemistry, seoul, Korea, Republic of
Yong Jae Cho
Affiliation:
[email protected], Korea university, Chemistry, Seoul, Korea, Republic of
Young Suk Seo
Affiliation:
[email protected], Korea university, Chemistry, Seoul, Korea, Republic of
Gyeong Bok Jung
Affiliation:
[email protected], Korea University, Chemistry, Seoul, Korea, Republic of
Chi-Woo Lee
Affiliation:
[email protected], Korea University, Chemistry, Seoul, Korea, Republic of
Jeunghee Park
Affiliation:
[email protected], Korea University, Chemistry, Seoul, Korea, Republic of
Get access

Abstract

Single-crystalline rock-salt PbS nanowires (NWs) were synthesized using three different routes; the solvothermal, chemical vapor transport, and gas-phase substitution reaction of pre-grown CdS NWs. They were uniformly grown with the [100] or [110], [112] direction in a controlled manner. In the solvothermal growth, the oriented attachment of the octylamine (OA) ligands enables the NWs to be produced with a controlled morphology and growth direction. As the concentration of OA increases, the growth direction evolves from the [100] to the higher surface-energy [110] and [112] directions. In the synthesis involving chemical vapor transport and the substitution reaction, the use of a lower growth temperature causes the higher surface-energy growth direction to change from [100] to [110]. We fabricated field effect transistors using single PbS NW, which showed intrinsic p-type semiconductor characteristics for all three routes. For the PbS NW with a thinner oxide layer, the carrier mobility was measured to be as high as 10 cm2V−1s−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Notes

1 Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435445.Google Scholar
2 Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. Adv. Mater. 2003, 15, 353389.10.1002/adma.200390087Google Scholar
3 Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K. -H.; Lieber, C. M. Science 2001, 294, 13131317.Google Scholar
4 Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature (London) 2002, 415, 617620.Google Scholar
5 Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C. M. Proc. Natl. Sci. U. S. A. 2004, 101, 1401714022.10.1073/pnas.0406159101Google Scholar
6 Wise, F. W. Lead Acc. Chem. Res. 2000, 33, 773780.10.1021/ar970220qGoogle Scholar
7 Gao, F.; Lu, Q.; Liu, X.; Yan, Y.; Zhao, D. Nano Lett. 2001, 1, 743.Google Scholar
8 Mukherjee, P. K.; Chatterjee, K.; Chakravorty, D. Phys. Rev. B 2006, 73, 035414.Google Scholar
9 Wu, C.; Shi, J. -B.; Chen, C. -J.; Chen, Y. -C.; Wu, P. -F.; Lin, J. -Y. Mater. Lett. 2007, 61, 4659.10.1016/j.matlet.2007.03.002Google Scholar
10 Yu, D.; Wang, D.; Meng, Z.; Lu, J.; Qian, Y. J. Mater. Chem. 2002, 12, 403.Google Scholar
11 Kuang, D.; Xu, A.; Fang, Y.; Liu, H.; Frommen, C.; Fenske, D. Adv. Mater. 2003, 15, 1747.Google Scholar
12 Chen, J.; Chen, L.; Wu, L. -M. Inorg. Chem. 2007, 46, 8038.Google Scholar
13 Wang, S. H.; Yang, S. H. Langmuir 2000, 16, 389.Google Scholar
14 Patla, I.; Acharya, S.; Zeiri, L.; Israelachvili, J.; Efrima, S.; Golan, Y. Nano Lett. 2007, 7, 1459.10.1021/nl070001qGoogle Scholar
15 Mokari, T.; Habas, S. E.; Zhang, M.; Yang, P. Angew. Chem. Int. Ed. 2008, 47, 5605.Google Scholar
16 Ge, J. -P.; Wang, J.; Zhang, H. -X.; Wang, X.; Peng, Q.; Li, Y. -D. Chem. Eur. J. 2005, 11, 1889.10.1002/chem.200400633Google Scholar
17 Afzaal, M.; O'Brien, P. J. Mater. Chem. 2006, 16, 1113.10.1039/b517258fGoogle Scholar
18 Fardy, M.; Hochbaum, A. I.; Goldberger, J.; Zhang, M. M.; Yang, P. Adv. Mater. 2007, 19, 3047.10.1002/adma.200602674Google Scholar
19 Warner, J. H. Adv. Mater. 2008, 20, 784.Google Scholar
20 Lee, J. Y.; Kim, D. S.; Park, J. Chem. Mater. 2007, 19, 46634669.Google Scholar
21 Salim, S. M.; Hamid, O. Ren. Energy 2001, 24, 575580.Google Scholar