Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:40:01.202Z Has data issue: false hasContentIssue false

Third-Order Nonlinear Optical Properties of a Series of Systematically Designed Conjugated Rigid-Rod Polyquinolines

Published online by Cambridge University Press:  25 February 2011

Ashwini K. Agrawal
Affiliation:
Department of Chemical Engineering and Center of Photoinduced Charge Transfer, University of Rochester, Rochester, N.Y. 14627–0166.
Samson A. Jenekhe
Affiliation:
Department of Chemical Engineering and Center of Photoinduced Charge Transfer, University of Rochester, Rochester, N.Y. 14627–0166.
Herman Vanherzeele
Affiliation:
Du Pont Central Research and Development Department, Wilmington, DE 19880–0356.
Jeffrey S. Meth
Affiliation:
Du Pont Central Research and Development Department, Wilmington, DE 19880–0356.
Get access

Abstract

The third-order nonlinear optical properties of thin films of two series of conjugated rigid-rod polyquinolines, exemplified by poly(2, 2'-(l, 4-phenylene)-6, 6'-bis(4-phenyl quinoline)) (PPPQ, 2d) and poly(2, 7-(l, 4-phenylene)-4, 9-diphenyl-l, 6-anthrazoline) (PPDA, 3d), were investigated by third harmonic generation spectroscopy. Of the nine polyquinolines with diverse backbone structures, PPPQ has the largest optical nonlinearity with a χ(3) (-3ω; ω, ω, ω) value of 3.2 × 10−12 esu and 3.3 × 10−11 esu in the off-resonant and three-photon resonant regions, respectively. A comparison of the nonresonant χ(3) of the series of nine systematically derived polyquinolines showed that a scaling law of the form χ(3) ∼ (λmax)v ∼ Eg -v does not hold; in fact, the nonresonant χ(3) was essentially independent of the optical bandgap. These results suggest that structure-χ(3) propeny relationships in polymers cannot be inferred from those of oligomers and model compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley: New York, 1991).Google Scholar
(b) Marder, S. R., Sohn, J. E., and Stucky, G. D. eds. Materials for Nonlinear Optics: Chemical Perspectives. ACS Symposium Series No. 455, (American Chemical Society, Washington, DC, 1991).Google Scholar
(c) Eaton, D. F., Science 251, 281287 (1991).Google Scholar
2. (a) Vanherzeele, H., Meth, J. S., Jenekhe, S. A., and Roberts, M. F., Appl. Phys. Lett. 5 8, 663665 (1991).Google Scholar
(b) Vanherzeele, H., Meth, J. S., Jenekhe, S. A., and Roberts, M. F., J. Opt. Soc. Am. B, in press,Google Scholar
(c) Osaheni, J. A., Jenekhe, S. A., Vanherzeele, H., and Meth, J. S., Chem. Mater. 3, 218221 (1991).Google Scholar
(d) Osaheni, J. A., Jenekhe, S. A., Vanherzeele, H., and Meth, J. S., J. Phys. Chem., in press,Google Scholar
(e) Jenekhe, S. A., Yang, C.-J., Vanherzeele, H., and Meth, J. S., Chem. Mater. 3 985 (1991).Google Scholar
3. Torruellas, W. E., Neher, D., Zanoni, R., Stegeman, G. I., Kajar, F., and Leclerc, M., Chem. Phys. Lett. 125, 1116 (1990).Google Scholar
4. Sooz, Z. G., Mc Williams, P. C. M., and Hayden, G. W., Chem. Phys. Lett. 171, 14 (1990).Google Scholar
(b) Dixit, S. N., Guo, D. and Mazumdar, S., Mol. Cryst. Liq. Cryst. 194, 33 (1991).Google Scholar
(c) Helin, J. R., Wong, K. Y., Zamani-Khamiri, O., and Garito, A. F., Phys. Rev. B 38, 1573 (1988).Google Scholar
(d) Kuzyk, M. G. and Dirk, C. W., Phys. Rev. A 41, 50985109 (1990).Google Scholar
5. (a) Agrawal, G. P., Cojan, C., and Flytzanis, C., Phys. Rev. B 17(2), 776 (1978);Google Scholar
(b) Rustagi, K. C. and Ducuing, J., Optics Commun. 10, 258 (1974);Google Scholar
(c) Pierce, B. M., Mater. Res. Soc. Symp. Proc. 109, 109 (1988).Google Scholar
6. Wrasidlo, W., Norris, S. O., Wolfe, J. F., Katto, T., and Stille, J. K., Macromolecules 9, 512 (1976).Google Scholar
7. (a) Stille, J. K., Macromolecules 14, 870 (1981);Google Scholar
(b) Sybert, P. D., Beever, W. H., and Stille, J. K., Macromolecules 14, 493 (1981).Google Scholar
8. Agrawal, A. K. and Jenekhe, S. A., Chem. Mater., in press.Google Scholar
9. Pelter, M. W. and Stille, J. K., Macromolecules 21, 2418 (1990).Google Scholar
10. Imai, Y., Johnson, E. F., Katto, T., Kurihara, M., and Stille, J. K., J. Polym. Sci., Polym. Chem. Ed. 13, 2233 (1975).Google Scholar
11. Norris, S. O. and Stille, J. K., Macromolecules 9, 496 (1976).Google Scholar
12. Beever, W. H. and Stille, J. K., J. Polym. Sci., Polym. Symp. 65, 41 (1978).Google Scholar
13. Vanherzeele, H., Appl. Opt. 22, 2246 (1990).Google Scholar
14. (a) Meth, J. S., Vanherzeele, H., Jenekhe, S. A., Yang, C.-J., Roberts, M. F., and Agrawal, A. K., SPIE Proceedings vol. 1560, in press,Google Scholar
(b) Agrawal, A. K., Jenekhe, S. A., Vanherzeele, H., and Meth, J. S., Chem. Mater. 1, 765768 (1991).Google Scholar
15. Kanetake, T., Ishikawa, K., Hasegawa, T., Koda, T., Takeda, T., Hasegawa, M., Kubodera, K., and Kabayashi, H., Appl. Phy. Lett. 54, 22872289 (1989).Google Scholar
16. Buchalter, B. and Meredith, G. R., Appl. Optics 21, 3221 (1982).Google Scholar
17. (a) Prasad, P. N. and Reinhardt, B. A., Chem. Mater. 2, 660669 (1990)Google Scholar
(b) Zhao, M.-T., Singh, B. P., and Prasad, P. N., J. Chem. Phys. 89, 5535 (1988).Google Scholar
18. Agrawal, A. K., Jenekhe, S. A., Vanherzeele, H., and Meth, J. S., J. Phys. Chem., in press.Google Scholar