Published online by Cambridge University Press: 01 February 2011
Thin-film silicon micromachined bridge actuators are fabricated at temperatures below 110°C on flexible polyethylene terephthalate plastic substrates. The micromechanical structures are electrostatically actuated both at the resonance frequency and at below-resonance frequencies, and the resulting deflection is optically monitored. Deflections up to 100 nm are measured below the resonance frequency with subnanometric precision. Resonance frequencies in the MHz range are observed in vacuum with quality factors of the order of 100. The movement is studied as a function of the geometrical dimensions of the actuators, of the actuation voltage and of the measurement pressure. The experimental data are analyzed using an electromechanical model. The performance of hydrogenated amorphous silicon based resonators on PET substrates is compared to that of similar microstructures on glass substrates.