Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:35:59.819Z Has data issue: false hasContentIssue false

Thin-Film Electrostatic Actuators on Flexible Plastic Substrates

Published online by Cambridge University Press:  01 February 2011

J. Gaspar
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
J. P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

Thin-film silicon micromachined bridge actuators are fabricated at temperatures below 110°C on flexible polyethylene terephthalate plastic substrates. The micromechanical structures are electrostatically actuated both at the resonance frequency and at below-resonance frequencies, and the resulting deflection is optically monitored. Deflections up to 100 nm are measured below the resonance frequency with subnanometric precision. Resonance frequencies in the MHz range are observed in vacuum with quality factors of the order of 100. The movement is studied as a function of the geometrical dimensions of the actuators, of the actuation voltage and of the measurement pressure. The experimental data are analyzed using an electromechanical model. The performance of hydrogenated amorphous silicon based resonators on PET substrates is compared to that of similar microstructures on glass substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gaspar, J., Chu, V., Louro, N., Cabeça, R., Conde, J. P., J. Non-Cryst. Solids 299–302, pp. 12241228, 2002.Google Scholar
2. Gaspar, J., Chu, V., Conde, J. P., J. Appl. Phys. 93, pp. 1001810029, 2003.Google Scholar
3. Syllaios, A. J., Schimert, T. R., Gooch, R. W., McCarde, W. L., Ritchey, B. A., Tregilgas, J. H., Mat. Res. Soc. Symp. Proc. 609, pp. A14.4.1–A14.4.6, 2000.Google Scholar
4. Lumelsky, V. J., Shur, M. S., Wagner, S., IEEE Sens. Journal 1, pp. 4151, 2001.Google Scholar
5. See for example, Elwenspoeck, M., Wiegerink, R., Mechanical Microsensors, Springer, Berlin, 2001.Google Scholar
6. Alpuim, P., Chu, V., Conde, J. P., J. Appl. Phys. 86, pp. 38123821, 1999.Google Scholar
7. Alpuim, P., Chu, V., Conde, J. P., J. Vac. Sci. Technol. A 21, pp. 10481054, 2003.Google Scholar
8. Newell, W. E., Science 161, pp. 13201326, 1968.Google Scholar
9. Gaspar, J., Chu, V., and Conde, J. P., Appl. Phys. Lett., in press, 2003.Google Scholar
10. See for example, Cleland, A. N., Foundations of Nanomechanics, Springer, New York, 2002.Google Scholar
11. Yang, J., Ono, T., Esashi, M., J. Microelectromech. Syst. 11, pp. 775783, 2002.Google Scholar