Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T22:50:12.436Z Has data issue: false hasContentIssue false

Thermoelectric Properties of the Semiconducting Antimonide-Telluride Mo3Sb5-xTe2+x

Published online by Cambridge University Press:  01 February 2011

Enkhtsetseg Dashjav
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 E-mail: [email protected]
Holger Kleinke
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 E-mail: [email protected]
Get access

Abstract

Typically, useful thermoelectrics are small-gap semiconductors. Mo3Sb7 would be an interesting candidate, if it were not metallic. Electronic structure calculations reveal that metallic Mo3Sb7 can be made semiconducting by heavy doping, e.g., by replacing Sb in part with Te. We succeeded in the preparation of semiconducting Mo3Sb5-xTe2+x with enhanced thermoelectric properties. Furthermore, we incorporated small M atoms into the cubic Sb/Te cage in an attempt to create the rattling effect as found in the filled skutterudites that have attracted wide interest for their outstanding thermoelectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rowe, D. M., CRC Handbook of Thermoelectrics, CRC Press, Inc., Boca Raton, 1995.Google Scholar
2. Rowe, D. M. and Bahandri, C. M., Modern Thermoelectrics, Holt Saunders, London, 1983.Google Scholar
3. Jeitschko, W. and Braun, D., Acta Crystallogr. B33, 7 (1977).Google Scholar
4. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., J. Phys. Chem. Solids 58, 1119 (1997).Google Scholar
5. Chung, D.Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., and Kanatzidis, M. G., Science 287, 1024 (2000).Google Scholar
6. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
7. Nolas, G. S., Morelli, D. T., and Tritt, T. M., Annu. Rev. Mater. Sci. 29, 89 (1999).Google Scholar
8. Nolas, G. S., Kaeser, M., Littleton, R. T. IV , and Tritt, T. M., Appl. Phys. Lett. 77, 1855 (2000).Google Scholar
9. Dilley, N. R., Bauer, E. D., Maple, M. B., Dordevic, S., Basov, D. N., Freibert, F., Darling, T. W., Migliori, A., Chakoumakos, B. C., and Sales, B. C., Phys. Rev. B61, 4608 (2000).Google Scholar
10. Kleinke, H., Chem. Soc. Rev. 29, 411 (2000).Google Scholar
11. Kleinke, H., J. Am. Chem. Soc. 122, 853 (2000).Google Scholar
12. Kleinke, H., Inorg. Chem. 40, 95 (2001).Google Scholar
13. Elder, I., Lee, C.-S., and Kleinke, H., Inorg. Chem. 41, 538 (2002).Google Scholar
14. Brown, A., Nature, 1965, 206, 502.Google Scholar
15. Chasmar, R. P. and Stratton, R., J. Electron Control 7, 52 (1959).Google Scholar
16. DiSalvo, F. J., Science 285, 703 (1999).Google Scholar
17. Dashjav, E., Szczepenowska, A., and Kleinke, H., J. Mater. Chem. 12, 345 (2002).Google Scholar
18. Hedin, L. and Lundqvist, B. I., J. Phys. C4, 2064 (1971).Google Scholar
19. Andersen, O. K., Phys. Rev. B12, 3060 (1975).Google Scholar
20. Skriver, H. L., The LMTO Method, Springer, Berlin, 1984.Google Scholar
21. Kokalj, A., J. Mol. Graph. Model. 17, 176 (1999).Google Scholar
22. Jepsen, O. and Andersen, O. K., Z. Phys. 97, 25 (1995).Google Scholar
23. Sofo, J. O. and Mahan, G. D., Phys. Rev. B49, 4565 (1994).Google Scholar
24. Fleurial, J. P., Gailliard, J., Triboulet, R., Scherrer, H., and Scherrer, S., J. Phys. Chem. Solids 49, 1237 (1988).Google Scholar