Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T05:18:36.741Z Has data issue: false hasContentIssue false

Thermoelectric properties of nanostructured (Pb1-mSnmTe)1-x(PbS)x with Pb and Sb precipitates

Published online by Cambridge University Press:  01 February 2011

Steven N Girard
Affiliation:
[email protected], Northwestern University, Chemistry, 2145 Sheridan Rd., Evanston, IL, 60208-3113, United States
Joseph R. Sootsman
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, IL, 60208-3113, United States
Chia-Her Lin
Affiliation:
[email protected], Michigan State University, Chemistry, East Lansing, MI, 48824, United States
John Androulakis
Affiliation:
[email protected], Michigan State University, Chemistry, East Lansing, MI, 48824, United States
Mercouri G. Kanatzidis
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, IL, 60208-3113, United States
Get access

Abstract

We report the physical characterization and thermoelectric properties of (Pb0.95Sn0.05Te)0.92(PbS)0.08 containing excess Pb and Sb prepared using the matrix encapsulation technique. Samples of (Pb0.95Sn0.05Te)0.92(PbS)0.08 : Pb 0.5 - 4 at. % rapidly quenched from the melt show microscale Pb inclusions that increase the thermal conductivity while slightly increasing the power factor, compared to (Pb0.95Sn0.05Te)0.92(PbS)0.08. Samples of (Pb0.95Sn0.05Te)0.92(PbS)0.08 : Pb 0.5%, Sb 2% prepared using the same technique show microscale Sb and Pb inclusions that upon heating cause rapid PbS and Sb segregation from the PbTe matrix. This behavior significantly alters the microstructure and degrades the transport properties of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harman, T. C., Taylor, P. J., Walsh, M. P., and Laforge, B. E., Science 297, 2229 (2002).Google Scholar
2. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T. P., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
3. Androulakis, J., Hsu, K. F., Pcionek, R., Kong, H., Uher, C., D'Angelo, J., Downey, A., Hogan, T. P., and Kanatzidis, M. G., Adv. Mater. 18, 1170 (2006).Google Scholar
4. Poudeu, P. F., D'Angelo, J., Kong, H. J., Downey, A. D., Short, J. L., Pcionek, R., Hogan, T. P., Uher, C., and Kanatzidis, M. G., J. Am. Chem. Soc. 128, 14347 (2006).Google Scholar
5. Poudeu, P. F., D'Angleo, J., Downey, A. D., Short, J. L., Hogan, T. P., and Kanatzidis, M. G., Angew. Chem. Int. Ed. Engl. 45, 3835 (2006).Google Scholar
6. Sootsman, J. R., Pcionek, R. J., Kong, H. J., Uher, C., and Kanatzidis, M. G., Chem. Mater. 18, 4993 (2006).Google Scholar
7. Androulakis, J., Lin, C. H., Kong, H. J., Uher, C., Wu, C. I., Hogan, T. P., Cook, B. A., Caillat, T., Paraskevopoulos, K. M., and Kanatzidis, M. G., J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
8. Heremans, J. P., Thrush, C. M., and Morelli, D. T., J. App. Phys. 98, 063703 (2005).Google Scholar
9. Kittel, C., Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Inc., 2005) p. 156.Google Scholar