Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T19:27:41.124Z Has data issue: false hasContentIssue false

Thermoelectric Properties of CoSb3-based Skutterudite Compounds

Published online by Cambridge University Press:  01 February 2011

Adul Harnwunggmoung
Affiliation:
[email protected], Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,, Osaka 565-0871, Japan
Ken Kurosaki
Affiliation:
[email protected], Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,, Osaka 565-0871, Japan
Hiroaki Muta
Affiliation:
[email protected], Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,, Osaka 565-0871, Japan
Shinsuke Yamanaka
Affiliation:
[email protected], Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,, Osaka 565-0871, Japan
Get access

Abstract

CoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tritt, T. M. and Subramanian, M. A. Mater. Res. Soc. Bull. 31 188194 (2006).10.1557/mrs2006.44Google Scholar
2 CRC Handbook of Thermoelectrics, edited by Rowe, D. W. (CRC, New York, 1995).10.1201/9781420049718Google Scholar
3 Heremans, J. P. Jomovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S. and Snyder, G. J. Science 321 554557 (2008).10.1126/science.1159725Google Scholar
4 Kurosaki, K. Kosuga, A. Muta, H. Uno, M. and Yamanaka, S. Appl. Phys. Lett. 87 061919–1 (2005).10.1063/1.2009828Google Scholar
5 Sales, B. C. Mandrus, D. and Williams, R. K. Science 272 13251328 (1996).10.1126/science.272.5266.1325Google Scholar
6 Zhao, X. Y. Shi, X. Chen, L. D. Zhang, W. Q. Zhang, W. B. and Pei, Y. Z. J. Appl. Phys. 99 053711–1 (2006).10.1063/1.2172705Google Scholar
7 Li, H. Tang, X. Zhang, Q. and Uher, C. Appl. Phys. Lett. 94 102114–1 (2009).10.1063/1.3099804Google Scholar
8 Uher, C. in Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semicmetals, edited by Tritt, T. M. Academic Press, San Diego, Vol. 69, pp 139253 (2001).10.1016/S0080-8784(01)80151-4Google Scholar
9 Sales, B. C. Chakoumakos, B. C. and Mandrus, D. Phys. Rev. B 61, 2475 (2000).10.1103/PhysRevB.61.2475Google Scholar
10 Steigmeier, E. F. and Abales, B. Phys. Rev. 136 A1149–A1155 (1964).10.1103/PhysRev.136.A1149Google Scholar
11 Yang, J. Meisner, G. P. and Chen, L. Appl. Phys. Lett. 85 11401142 (2004).10.1063/1.1783022Google Scholar
12 Zhou, M. Chen, L. Zhang, W. and Feng, C. J. Appl. Phys. 98 013708–1 (2005).10.1063/1.1944213Google Scholar
13 Harnwunggmoung, A. Kurosaki, K. Charoenphakdee, A. Yusufu, A. Muta, H. and Yamanaka, S., Materials Transaction, 51, 882886 (2010).10.2320/matertrans.E-M2010808Google Scholar
14 Harnwunggmoung, A. Kurosaki, K. Muta, H. and Yamanaka, S. Applied Physics Letters, accepted.Google Scholar
15 Shi, X. Kong, H. Li, C.-P. Uher, C. Yang, J. Salvador, J. R. Wang, H. Chen, L. and Zhang, W. Appl. Phys. Lett. 92 182101–1 (2008).10.1063/1.2920210Google Scholar