Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:24:37.016Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Composite PbTe – PbSnS2 Materials

Published online by Cambridge University Press:  01 February 2011

Steven N Girard
Affiliation:
[email protected], Northwestern University, Chemistry, 2145 Sheridan Rd., Evanston, Illinois, 60208-3113, United States
Jiaqing He
Affiliation:
[email protected], Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Vinayak P Dravid
Affiliation:
[email protected], Northwestern University, Materials Science and Engineering, Evanston, Illinois, United States
Mercouri Kanatzidis
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Get access

Abstract

The thermoelectric (Pb1-mSnmTe)1-x(PbS)x where m = 0.05 and x = 0.08 has been shown to produce PbS nanostructures that effectively scatter phonons, enhancing ZT. As Sn substitution is increased, a new phase of PbSnS2 precipitates. We find that incorporation of PbSnS2 in PbTe results in a significant reduction in lattice thermal conductivity around 0.6 W/mK at room temperature. We present preliminary characterization and thermoelectric properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vining, C. B. Nat. Mater. 8, 83 (2009).Google Scholar
2 Sootsman, J. R. Chung, D. Y. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 48, 8616 (2009).Google Scholar
3 Kanatzidis, M. G. Chem. Mater. 22, 648 (2009).Google Scholar
4 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
5 Li, D. Wu, Y. Fan, R. Yang, P. and Majumdar, A. Appl. Phys. Lett. 83, 3186 (2003).Google Scholar
6 Dresselhaus, M. S. Chen, G. Tang, M. Y. Yang, R. G. Lee, H. Wang, D. Z. Ren, Z. F. Fleurial, J. P. and Gogna, P. Adv. Mater. 19, 1043 (2007).Google Scholar
7 Androulakis, J. Lin, C. H. Kong, H. J. Uher, C. Wu, C. I., Hogan, T. Cook, B. A. Caillat, T. Paraskevopoulos, K. M. and Kanatzidis, M. G. J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
8 Orihashi, M. Noda, Y. Chen, L. D. Goto, T. and Hirai, T. J. Phys. Chem. Solids 61, 919 (2000).Google Scholar
9 Hayashi, K. Kitakaze, A. and Sugaki, A. Mineral. Mag. 65, 645 (2001).Google Scholar
10 Chang, L. L. Y. and Brice, W. R. W. R., Mineral. Mag. 38, 186 (1971).Google Scholar