Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T11:26:00.217Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Bi1-xSbx Nanowire Arrays

Published online by Cambridge University Press:  21 March 2011

Yu-Ming Lin
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Stephen B. Cronin
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Oded Rabin
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Jackie Y. Ying
Affiliation:
Department of Chemical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139
Mildred S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We present here a thermoelectric transport property study of Bi1−xSbx alloy nanowires embedded in a dielectric matrix. Temperature-dependent resistance measurements exhibit nonmonotonic trends as the antimony mole fraction (x) increases, and a theoretical model is presented to explain the features that are related to the unusual band structure of Bi1−xSbx systems. Seebeck coefficient measurements are performed on nanowires with different diameters and compositions, showing enhanced thermopower over bulk Bi. The magneto-Seebeck coefficient of these nanowires also exhibits an unusual field dependence that is absent in bulk samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isaacson, R. T. and Williams, G. A., Phys. Rev. 185, 682 (1969).Google Scholar
2. Lin, Y.-M., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 62, 4610 (2000).Google Scholar
3. Heremans, J., Thrush, C. M., Lin, Y.-M, Cronin, S., Zhang, Z., Dresselhaus, M. S., and Mansfield, J. F., Phys. Rev. B 61, 2921 (2000).Google Scholar
4. Lin, Y.-M., Cronin, S. B., Ying, J. Y., Dresselhaus, M. S., and Heremans, J. P., Appl. Phys. Lett. 76, 3944 (2000).Google Scholar
5. Goldsmid, H. J., Phys. Stat. Sol. (a) 1, 7 (1970).Google Scholar
6. Lenoir, B., Dauscher, A., Devaux, X., Martin-Lopez, R., Ravich, Yu. I., Scherrer, H., and Scherrer, S., in Proceedings of the 15th International Conference on Thermoelectrics (IEEE, 1996), pp. 1.Google Scholar
7. Cucka, P. and Barrett, C. S., Acta. Crystallogr. 15, 865 (1962).Google Scholar
8. Rabin, O., Lin, Y.-M., and Dresselhaus, M. S., Appl. Phys. Lett. 79, 81 (2001).Google Scholar
9. Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., Appl. Phys. Lett. 73, 2950 (1998).Google Scholar
10. Zhang, Z., Ying, J. Y., and Dresselhaus, M. S., J. Mater. Res. 13, 1745 (1998).Google Scholar
11. Lin, Y.-M., Cronin, S. B., Rabin, O., Heremans, J., Dresselhaus, M. S., and Ying, J. Y., Mater. Res. Soc. Symp. Proc. 635, C4.30 (2000).Google Scholar
12. Lin, Y.-M., Cronin, S. B., Rabin, O., Ying, J. Y., and Dresselhaus, M. S., Appl. Phys. Lett. 79, 677 (2001).Google Scholar
13. Heremans, J. and Thrush, C. M., Phys. Rev. B 59, 12579 (1999).Google Scholar
14. Gallo, C. F., Chandrasekar, B. S., and Sutter, P. H., J. Appl. Phys. 34, 144 (1963).Google Scholar
15. Yim, W. M. and Amith, A., Solid State Electronics 15, 1141 (1972).Google Scholar