Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T23:27:33.927Z Has data issue: false hasContentIssue false

Thermodynamic study of lithium-ion battery materials

Published online by Cambridge University Press:  25 April 2012

Denis Y.W. Yu
Affiliation:
Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637553, Singapore
Yvan Reynier
Affiliation:
CNRS-Caltech Materials for Electrochemical Energetics Laboratory, California Institute of Technology, MC 138-78, Pasadena, CA 91125, USA
Joanna Dodd Cardema
Affiliation:
CNRS-Caltech Materials for Electrochemical Energetics Laboratory, California Institute of Technology, MC 138-78, Pasadena, CA 91125, USA
Yasunori Ozawa
Affiliation:
CNRS-Caltech Materials for Electrochemical Energetics Laboratory, California Institute of Technology, MC 138-78, Pasadena, CA 91125, USA
Rachid Yazami
Affiliation:
Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637553, Singapore CNRS-Caltech Materials for Electrochemical Energetics Laboratory, California Institute of Technology, MC 138-78, Pasadena, CA 91125, USA
Get access

Abstract

The ability to monitor the status of a battery during charge and discharge is important for predicting its performance and life. This is typically done by measuring the voltage and resistance across the terminals, or by external characterization methods such as X-ray diffraction and Raman spectroscopy. Thermodynamics measurements based on entropy and enthalpy provide another mean to “look inside” a battery, giving us more information to determine the state of health of the battery. In particular, entropy undergoes drastic changes at boundaries of phase transitions taking place in each electrode material at defined states of charge (lithium stoichiometry). Recent work on thermodynamics study on lithium ion battery materials is summarized in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thompson, A. H., Physica 105B, 461 (1981).Google Scholar
2. Takano, K., Saito, Y., Kanari, K., Nozaki, K., Kato, K., Negishi, A. and Kato, T., J. Applied Electrochem. 32, 251 (2002).Google Scholar
3. Reynier, Y., Yazami, R. and Fultz, B., J. Power Sources 119-121, 850 (2003).Google Scholar
4. Reynier, Y. F., Yazami, R. and Fultz, B., J. Electrochem. Soc. 151, A422 (2004).Google Scholar
5. Yazami, R. and Reynier, Y., J. Power Sources 153, 312 (2006).Google Scholar
6. Reynier, Y., Yazami, R. and Fultz, B., J. Power Sources 165, 616 (2007).Google Scholar
7. Reynier, Y., Yazami, R., Fultz, B. and Barsukov, I., J. Power Sources 165, 552 (2007).Google Scholar
8. Bach, S., Pereira-Ramos, J. P., Baffier, N. and Messina, R., Electrochimica Acta 37, 1301 (1992).Google Scholar
9. Thomas, K. E., Bogatu, C. and Newman, J., J. Electrochem. Soc. 148, A570 (2001).Google Scholar
10. Reynier, Y., Graetz, J., Swan-Wood, T., Rez, P., Yazami, R. and Fultz, B., Phys. Rev. B 70, 174304 (2004).Google Scholar
11. Yazami, R. and Ozawa, Y., ECS Trans. 1, 151 (2006).Google Scholar
12. Dodd, J. L., Nishimura, S., Yazami, R., Yamada, A. and Fultz, B., ECS Meeting Abstract 602, 179 (2006).Google Scholar
13. Dodd, J. L., Ph.D. Thesis, California Institute of Technology (2007).Google Scholar
14. Ohzuku, T. and Ueda, A., J. Electrochem. Soc. 141, 2972 (1994).Google Scholar
15. Yanagida, K., Tsuruta, S., Nakamura, H. and Yazami, R., ECS meeting Abstract 461 (2009).Google Scholar
16. Chen, Z., Lu, Z. and Dahn, J. R., J. Electrochem. Soc. 149, A1604 (2002).Google Scholar