Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:46:36.514Z Has data issue: false hasContentIssue false

Thermodynamic Factors Governing Interfacial Chemistry And Wetting In Binary Alloy-Refractory Oxide Systems.

Published online by Cambridge University Press:  25 February 2011

Merlin V.
Affiliation:
L.T.P.C.M., URA. 29. I.N.P.G.. D.U., ENSEEG, Bp. 75 38402 Saint Martin d'Hères Cedex, France.
Kritsalis P.
Affiliation:
L.T.P.C.M., URA. 29. I.N.P.G.. D.U., ENSEEG, Bp. 75 38402 Saint Martin d'Hères Cedex, France.
Coudurier L.
Affiliation:
L.T.P.C.M., URA. 29. I.N.P.G.. D.U., ENSEEG, Bp. 75 38402 Saint Martin d'Hères Cedex, France.
Eustathopoulos N.
Affiliation:
L.T.P.C.M., URA. 29. I.N.P.G.. D.U., ENSEEG, Bp. 75 38402 Saint Martin d'Hères Cedex, France.
Get access

Abstract

For a given non-reactive metal M- refractory oxide system, the influence of a metallic solute A on interfacial chemistry and wetting depends mainly on the value of εO−A the Wagner interaction parameter which quantifies the solute A-solute oxygen interactions in the liquid matrix M.

For εO−A < 0 (moderate attraction between solutes A and O) additions of A in M enhance dissolution of oxide in the liquid alloy, thereby increasing the dissolved oxygen content. The O-A clusters formed are adsorbed at the metal-oxide interface leading to an increase in both wettability and adhesion energy. For εO−A ≪0 (strong A-O interactions), solute A can also form an oxide by reduction of the substrate. The more metallic in character this oxide is, the more wettable it will be by molten metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hicter, P., Chatain, D., Pasturai, A., Eustathopoulos, N., J. Chim. Phys. (F), 85, 941–5(1988).CrossRefGoogle Scholar
[2] Rivollet, I., Thesis, INP Grenoble, France, (1986).Google Scholar
[3] Li, J.G., Coudurier, L., Eustathopoulos, N., J. Mater. Sci., 25, 1109–16, (1989).CrossRefGoogle Scholar
[4] Laurent, V., Thesis, INP Grenoble, France (1988).Google Scholar
[5] Aksay, I.A., Hoge, C.E., Pask, J.A., J. Phys. Chem., 78, 1178 (1974).CrossRefGoogle Scholar
[6] Yu.V., Naidich, Progress in Surface and Membrane Sci., 14, 353484 (1981).Google Scholar
[7] Miedema, A.R., de Boer, F.R., Boom, R., Dorleijn, J.W.F., Calphad, 1, 353 (1977).CrossRefGoogle Scholar
[8] Ritter, J., Burton, M.S., Trans. AIME, 239, 21–6, (1967).Google Scholar
[9] Kritsalis, P., Merlin, V., Coudurier, L., Eustathopoulos, N., Acta Metall, et Mater., to be published.Google Scholar
[10] Yu.V., Naidich, Zhuravlev, V.S., Chuprina, V.G., Poroshkovaya Metallurgiya, n° 3, 8285 (1974). (English translations).Google Scholar
[11] Ownby, P.D., Liu, J., J. Adhesion Sci. Technol., 2, 255–69, (1988).CrossRefGoogle Scholar
[12] Standing, R., Nicholas, M., J. Mater. Sci., 13, 1509–14, (1978).CrossRefGoogle Scholar
[13] Kritsalis, P., Coudurier, L., Eustathopoulos, N., J. Mater. Sci., 26, 3400–08, (1991).CrossRefGoogle Scholar