Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T04:28:28.867Z Has data issue: false hasContentIssue false

Thermodynamic Calculations in New Thermoelectric Materials. Application to Processes

Published online by Cambridge University Press:  21 March 2011

J.C. Tedenac
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée - UMR - CNRS 5617 Université de Montpellier 2 -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier, Cedex 5, France
M.C. Record
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée - UMR - CNRS 5617 Université de Montpellier 2 -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier, Cedex 5, France
V. Izard
Affiliation:
Laboratoire de Physico-Chimie de la Matière Condensée - UMR - CNRS 5617 Université de Montpellier 2 -Sciences et Techniques du Languedoc CC003, Pl. E. Bataillon, 34095 Montpellier, Cedex 5, France
Get access

Abstract

The processing of electronic materials and devices is an important field of application of thermodynamics. Many growth processes of semi-conductors involve vapour-solid or liquid-solid interfaces which can be considered close to the thermodynamic equilibrium. Performance enhancement of thermoelectric modules can be obtained by a good knowledge of the constitution of the materials involved in their fabrication. Its requires a relevant thermodynamic analysis of the material.Making these optimized thermoelectric materials require at least three elements being thermoelectric materials typically multicomponent systems which are usually studied by a CALPHAD analysis of the relevant systems. All these problems are related to the thermodynamic quantities of species involved in the materials such as activities and free energy functions of electrons, holes and components.

In this paper we present a contribution to a better understanding of antimony based thermoelectric materials by a CALPHAD approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tedenac, J.C, Marin-Ayral, R.M, Ravot, D., M.C Record. Proc. of the 20 th International Conference on Thermoelectrics, Beijing,(2001), to be published.Google Scholar
[2] Saunders, N., Miodownick, P.CALPHAD, a comprehensive guide”, Pergamon (Exeter, 1998).Google Scholar
[3] Kattner, U, Lukas, H.L, Petsow, G, Gather, B, Irle, E, Blachnik, R, Z. fur MetallK.Vol. 79, (1988), pp 3240 Google Scholar
[4] Chen, Q., Hillert, M., Sundman, B., Oates, W.A., Fries, S.G., Schmid-Fetzer, R., J. of Electronic Mater., 27–8, (1998), 961974.Google Scholar
[5] Calphad, Dinsdale A., Vol.21-2, (1997), 317-425.Google Scholar
[6] Ansara, I., Dupin, N., “Thermodynamic modelling”, COST, Ansara, I., Dinsdale, A.T., Rand, M.H. Ed., EUR 18499 EN. & Ansara, I., Chen, Q., Hillert, M., Guillermet, A. Fernández, Gomes-Fries, H.L. S., Lukas, , Seifert, H.J., Oates, W.A., CALPHAD, 22(1), 2031 Google Scholar
[7] Venkatasubramaniam, R., Watko, E., Colpitts, T., Mat. Res. Soc. Symp. Proc., 148, (1997), 145150 Google Scholar
[8] Caillat, T., Fleurial, J.P., Borschevsky, A., J. Phys. and Chem. of Solids, 58–7, (1997), 11191125.Google Scholar
[9] Massalski, T., T.B., , et al. , Binary Alloy Phase Diagrams. 2ed. 1990, ASM Int.: Materials Park, OH.Google Scholar
[10] Zabdyr, L.A., CALPHAD, 17(3), 1993 Google Scholar
[11] Liu, X.J., Wang, C.P., Ohnuma, I., Kainuma, R. and Ishida, K., Journal of Phase Equilibria, 21(5), 2000 Google Scholar
[12] Record, M.C., Izard, V., Tedenac, J.C., Gomes-Fries, S., Calphad, (2002), to be publishedGoogle Scholar
[13] Chen, Q., Hillert, M., J. of compounds and all. 245, (1996), 125131 Google Scholar
[14] Hillert, M., CALPHAD, 22(1), 1993,127133 Google Scholar