Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T05:23:09.427Z Has data issue: false hasContentIssue false

Thermal Stability of Amorphous Multilayer Structures

Published online by Cambridge University Press:  26 February 2011

K. Tanaka
Affiliation:
Electrotechnical Laboratory, Umezono, Tsukuba, Ibaraki 305
I. Honma
Affiliation:
University of Tokyo, Bunkyo-ku, Tokyo 113
H. Tamaoki
Affiliation:
University of Tokyo, Bunkyo-ku, Tokyo 113
H. Komiyama
Affiliation:
University of Tokyo, Bunkyo-ku, Tokyo 113
Get access

Abstract

Firstly, a general discussion on the crystallization of amorphous multilayer structures is presented from the viewpoints of thermodynamics, where both a nature of the heterointerface and a repeat distance of the layer are theoretically shown to be key factors for determining the crystallization temperature (Tc). Secondly, experimental observations are described of the effect of each layer thickness and the heterointerface on the structural stability of reactively-sputtered a-Ge:H(a-Ge)/a-GeNx multilayer films. It is demonstrated that Tc of a-Ge:H(a-Ge) increases with decreasing its layer thickness and/or increasing the thickness of a-GeNx layer, which is interpreted qualitatively within the framework of the macroscopic thermodynamics. Relevant phenomena observed by other groups as well as the present results are discussed in a unified manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).Google Scholar
2. Miyazaki, S., Ihara, Y. and Hirose, M., Phys. Rev. Lett. 59, 125 (1987).CrossRefGoogle Scholar
3. Hattori, K., Mori, T., Okamoto, H. and Hamakawa, Y., Phys. Rev. Lett. 60, 825 (1988).Google Scholar
4. Tiedje, T., Abeles, B. and Brooks, B. G., Phys. Rev. Lett. 54, 2545 (1985).Google Scholar
5. Kakalios, J., Fritzsche, H. and Ibaraki, N., J. Non-cryst. Solids 66, 339 (1984).Google Scholar
6. Hundhausen, M., Ley, L. and Carius, R., Phys. Rev. Lett. 53, 1598 (1984).Google Scholar
7. Agarwal, S. C. and Guha, S., Phys. Rev. B31, 5547 (1985).Google Scholar
8. Prokes, S. M. and Spaepen, F., Appl. Phys. Lett. 47, 234 (1985).Google Scholar
9. Homma, H., Schuller, I. K., Sevenhans, W., and Bruynseraede, Y., Appl. Phys. Lett. 50, 594 (1987).CrossRefGoogle Scholar
10. Clevenger, L. A., Thompson, C. V. and Cammarata, R. C., Appl. Phys. Lett. 52, 795 (1988).Google Scholar
11. Tanaka, K., Honma, I. and Komiyama, H., 13th Seminar on Properties and Applications of Amorphous Materials (Hamamatsu, Nov. 16–18,1986): I. Honma, H. Hotta, K. Kawai, H. Komiyama and K. Tanaka, J. Non-cryst. Solids 97&98, 947 (1987).Google Scholar
12. Gonzalez-Hernandez, J., Allred, D. D. and Nguyen, O. V., MRS Symp. Proc. 77, 665 (1987).Google Scholar
13. Volmer, M. and Wever, A., Z. Phys. Chem. 119, 277 (1925).Google Scholar
14. Turnbull, D., in Turnbull, D. and Seitz, F. eds., Solid State Physics, vol.3. p. 276 (Academic Press, New York, 1956).Google Scholar
15. Honma, I., Kawai, K., Komiyama, H. and Tanaka, K., Appl. Phys. Lett. 50, 276 (1987).CrossRefGoogle Scholar
16. Honma, I., Komiyama, H. and Tanaka, K., J. Appl. Phys. (in print) 1988 Google Scholar
17. Cammarata, R. C. and Greer, A. L., J. Non-cryst. Solids 61×62, 889 (1984).Google Scholar
18. Maley, N. and Lannin, J. S., Phys. Rev. B31, 5577 (1985).Google Scholar