Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:28:08.955Z Has data issue: false hasContentIssue false

Thermal Neutron Irradiation of LiNbO3 Crystals Doped with Hf and Hfmg

Published online by Cambridge University Press:  15 February 2011

J. G. Marques
Affiliation:
CFN, Univ. Lisboa, Av. Prof. Gama Pinto, 2, P-1699 Lisboa Codex, Portugal
A. Kling
Affiliation:
CFN, Univ. Lisboa, Av. Prof. Gama Pinto, 2, P-1699 Lisboa Codex, Portugal
J. C. Soares
Affiliation:
CFN, Univ. Lisboa, Av. Prof. Gama Pinto, 2, P-1699 Lisboa Codex, Portugal
M. F. Da Silva
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, P-2685 Sacavém, Portugal
E. Diétguez
Affiliation:
Dept. Física de Materiales, Univ. Autónoma de Madrid, E-28049 Madrid, Spain
F. Agullö-Löpez
Affiliation:
Dept. Física de Materiales, Univ. Autónoma de Madrid, E-28049 Madrid, Spain
Get access

Abstract

The effects of irradiation with thermal neutrons on LiNbO3 single crystals doped with Hf and Hf,Mg were studied with ion beam and hyperfme interaction techniques, using Hf as a probe. In crystals where Hf occupies both Li and Nb sites, the fraction in Nb sites is strongly reduced after irradiation. The initial situation is recovered after thermal annealing at 973 K, in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arizmendi, L. and Agulló-López, F., MRS Bull. XIX (4), 32 (1994).Google Scholar
2. for a recent review see Brannon, P.J., IEEE Tr. Nucl. Sci. 41, 642 (1994).Google Scholar
3. Hogdson, E.R. and Agulló-López, F., Nucl. Instr. Meth. B 32, 42 (1988).Google Scholar
4. Mughabghab, S.F., Divadeenam, M. and Holden, N.E., Neutron Cross Sections, vols. 1A and 1B (Academic Press, New York, 1984).Google Scholar
5. Coltman, R.R. Jr., Klabunde, C.E., McDonald, D.L. and Redman, J.K., J. Appl. Phys. 33, 3509 (1962).Google Scholar
6. Rebouta, L., Soares, J.C., Silva, M.F. da, Sanz-García, J.A., Diéguez, E. and Aguló-López, F., Nucl. Instrum. Methods B 45, 495 (1990).Google Scholar
7. Rebouta, L., Silva, M.F. da, Soares, J.C., Santos, M.T., Diéguez, E. and Agulló-López, F., Opt. Mat. 4, 174 (1995).Google Scholar
8. Schatz, G. and Weidinger, A., Nuclear Condensed Matter Physics (Wiley, Chichester, 1996), p. 78 Google Scholar
9. Marques, J.G., Jesus, C.M., Melo, A.A., Soares, J.C., Diéguez, E. and Agulló-López, F., in Proc. 10th Int. Conf. on Hyperfme Interactions, edited by Rots, M., Vantomme, A., Dekoster, J., Coussement, R. and Langouche, G., Hyp. Int. (C) 1, 348 (1996).Google Scholar
10. Kling, A., Marques, J.G., Correia, J.G., Silva, M.F. da, Agulló-López, E. Diéguez, F., Soares, J.C., Nucl. Instrum. Methods B 113, 293 (1996).Google Scholar
11. Kling, A., Nucl. Instrum. Methods B 102, 141 (1995).Google Scholar
12. González, R., Ballesteros, C., Chen, Y. and Abraham, M.M., Phys. Rev. B 39, 11085 (1989).Google Scholar
13. Noda, K., Ishii, Y., Matsui, H. and Watanabe, H., Rad. Effects 97, 297 (1986).Google Scholar
14. Alenius, G., Arnell, S.E., Schale, C. and Wallander, E., Phys. Scr. 3, 105 (1971).Google Scholar
15. Donnerberg, H., Tomlinson, S.M., Catlow, C.R.A. and Schirmer, O.F., Phys. Rev. B 40, 11909 (1989).Google Scholar