Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T18:51:25.824Z Has data issue: false hasContentIssue false

Thermal Modification of Nanoscale Mask Openings in Polystyrene Sphere Layers

Published online by Cambridge University Press:  13 March 2014

Thomas Riedl*
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany
Matthias Strake
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany
Werner Sievers
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany
Joerg K.N. Lindner
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany
*
*Corresponding author. Email: [email protected]
Get access

Abstract

An experimental analysis of the morphology changes of hexagonally close packed polystyrene sphere monolayers induced by annealing in air is presented. The triangular interstices between each triple of spheres, which are frequently used as nanoscale mask openings in colloidal lithography, are observed to gradually shrink in size and change in shape upon annealing. Top view scanning electron microscopy images reveal that different stages are involved in the closure of monolayer interstices at annealing temperatures in the range between 110°C and 120°C. In the early stages shrinkage of the triangular interstices is dominated by material transport to and thus shortening of their corners, in the late stages interstice area reduction via displacement of the triangle edges becomes significant. At intermediate annealing times the rate of interstice area reduction displays a maximum before a stabilized state characterized by a rounded isosceles triangular shape forms.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wilkinson, C. D. W. and Beamont, S. P., “Electron beam nanolithography”, The Physics and Fabrication of Microstructures and Microdevices, ed. Kelly, M. J. and Weisbuch, C. (Springer, 1986) pp. 3650.10.1007/978-3-642-71446-7_3CrossRefGoogle Scholar
Zubia, D., Zaidi, S. H., Hersee, S. D. and Brueck, S. R. J., J. Vac. Sci. Technol. B18, 3514 (2000).10.1116/1.1321283CrossRefGoogle Scholar
Chou, S. Y., Krauss, P. R. and Renstrom, P. J., Science 272, 85 (1996).10.1126/science.272.5258.85CrossRefGoogle Scholar
Hulteen, J. and Van Duyne, R. P., J. Vac. Sci. Technol. A13, 1553 (1995).10.1116/1.579726CrossRefGoogle Scholar
Hulteen, J. C., Treichel, D. A., Smith, M. T., Duval, M. L., Jensen, T. R. and Van Duyne, R. P., J. Phys. Chem. B103, 3854 (1999).10.1021/jp9904771CrossRefGoogle Scholar
Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B105, 5599 (2001).10.1021/jp010657mCrossRefGoogle Scholar
Li, N. and Zinke-Allmang, M., Jpn. J. Appl. Phys. 41, 4626 (2002).10.1143/JJAP.41.4626CrossRefGoogle Scholar
Jensen, T. R., Malinsky, M. D., Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B104, 10549 (2000).10.1021/jp002435eCrossRefGoogle Scholar
Henry, A.-I., Bingham, J. M., Ringe, E., Marks, L. D., Schatz, G. C. and Van Duyne, R. P., J. Phys. Chem. C115, 9291 (2011).Google Scholar
Lindner, J. K. N., Bahloul-Hourlier, D., Kraus, D., Weinl, M., Melin, T. and Stritzker, B., Mater. Sci. Semic. Processing 11, 169 (2008).10.1016/j.mssp.2008.09.016CrossRefGoogle Scholar
Madel, M., Xie, Y., Tischer, I., Neuschl, B., Feneberg, M., Frey, R. and Thonke, K., Phys. Stat. Sol. B248, 1915 (2011).10.1002/pssb.201147101CrossRefGoogle Scholar
Kosiorek, A., Kandulski, W., Glaczynska, H. and Giersig, M., Small 1, 439 (2005).10.1002/smll.200400099CrossRefGoogle Scholar
Lindner, J. K. N., Gehl, B. and Stritzker, B., Nucl. Instr. Meth. Phys. Res. B242, 167 (2006).10.1016/j.nimb.2005.08.067CrossRefGoogle Scholar
Gogel, D., Weinl, M., Lindner, J. K. N. and Stritzker, B., J. Optoelectr. Adv. Mater. 12, 740 (2010).Google Scholar
Goudy, A., Gee, M. L., Biggs, S. and Underwood, S., Langmuir 11, 4454 (1995).10.1021/la00011a045CrossRefGoogle Scholar
Lin, F. and Meier, D.J., Langmuir 12, 2774 (1996).10.1021/la951554wCrossRefGoogle Scholar
Nawaz, Q. and Rharbi, Y., Langmuir 26, 1226 (2010).10.1021/la902381bCrossRefGoogle Scholar
Kumnorkaew, P., Ee, Y.-K., Tansu, N. and Gilchrist, J. F., Langmuir 24, 12150 (2008).10.1021/la801100gCrossRefGoogle Scholar
Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
Blanchard, L.-P., Hesse, J. and Malhotra, S. L., Can. J. Chem. 52, 3170 (1974).10.1139/v74-465CrossRefGoogle Scholar