Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:26:39.820Z Has data issue: false hasContentIssue false

Thermal Desorption of Hg Monolayers from Cu(100)

Published online by Cambridge University Press:  15 February 2011

Y. J. Kime
Affiliation:
Department of Physics, 201 Physics Building, Syracuse University, Syracuse, NY 13244–1130
Jiandi Zhang
Affiliation:
Department of Physics, 201 Physics Building, Syracuse University, Syracuse, NY 13244–1130
P. A. Dowben
Affiliation:
Department of Physics, 201 Physics Building, Syracuse University, Syracuse, NY 13244–1130
Get access

Abstract

A two dimensional phase transition from one adlayer structure to another is an inherent part of the thermal desorption of one monolayer of Hg on Cu(100). The energetics of this phase transition have been studied using thermal desorption spectroscopy (TDS). The TDS spectra reflect the coexistence of the two structural phases for a range of Hg exposures. The TDS spectra have been analyzed within a Polanyi-Wigner framework modified to account for the phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bauer, E., Appl. Phys. A 51, 71 (1990).Google Scholar
[2] Kleban, P. and Hentschke, R., Phys. Rev. B 37, 5738 (1988).Google Scholar
[3] Browne, D.A. and Kleban, P., Phys. Rev. A 40, 1615 (1989).CrossRefGoogle Scholar
[4] Dowben, P.A. in Surface Segregation Phenomena, edited by Dowben, P.A. and Miller, A. (CRC Press, Boca Raton,1990) p.145.Google Scholar
[5] Egelhoff, W.F. Jr. Mater. Res. Soc. Symp. Proc. 83, 189 (1987).CrossRefGoogle Scholar
[6] Miedema, A.R. and Dorleijn, J.V.F., Phil. Mag. B43, 251 (1981).Google Scholar
[7] Dowben, P.A., Kime, Y.J., Hutchings, C.V., Li, Wei, and Vidali, G., Surf. Sci. 230, 113 (1990), and references therein.Google Scholar
[8] Hutchings, C.W., Dowben, P.A., Kime, Y.J., Li, V., Karimi, M., Hoses, C., and Vidali, G., Proc. Mat. Res. Soc. Symp. 159, 133 (1990).CrossRefGoogle Scholar
[9] Dowben, P.A., Kime, Y.J., LaGraffe, D., and Onellion, M., Surf. And Interface Anal. 15, 163 (1990).Google Scholar
[10] Dowben, P.A., LaGraffe, D., Li, Dongqi, Vidali, G., Zhang, L., Dottl, L., and Onellion, M., Phys. Rev. B in press.Google Scholar
[11] Varma, Shikha, Kime, Y.J., LaGraffe, D., Dowben, P.A., Onellion, M., and Erskine, J.L., J. Chem. Phys. 93, 2819 (1990).Google Scholar
[12] Varma, Shikhaand Dowben, P.A., J. Vac. Sci. Technol. A 8, 2605 (1990).CrossRefGoogle Scholar
[13] Golze, M., Grunze, M., and Hirschwald, V., Vacuum 31, 697 (1981).CrossRefGoogle Scholar
[14’ Golze, M., Grunze, M., and Unertl, W., Prog. Surf. Sci. 22, 101 (1986).CrossRefGoogle Scholar
[15] Kime, Y.J., Dowben, P.A., Zhang, J., and Zhang, L., in preparation.Google Scholar
[16] Ehrlich, G., J. Phys. Chem. 59, 473 (1955).Google Scholar
[17] Ehrlich, G., J. Phys. Chem. Solids, 1, 3 (1956).Google Scholar
[18] Redhead, P.A., Hobson, J.P., and Kornelson, E.V., “The Physical Basis of Ultrahigh Vacuum”, Chapman and Hall, London (1968).Google Scholar
[19] Niemantsverdriet, J.W. and Wandelt, K., J. Vac. Sci. Technol. A6, 757 (1988).CrossRefGoogle Scholar