Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T07:31:40.639Z Has data issue: false hasContentIssue false

Thermal Conversion of Cs-exchanged IONSIV IE-911 into a Novel Caesium Ceramic Wasteform by Hot Isostatic Pressing

Published online by Cambridge University Press:  21 February 2013

Tzu-Yu Chen
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.,
Joseph A. Hriljac
Affiliation:
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.,
Amy S. Gandy
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.,
Martin C. Stennett
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.,
Neil C. Hyatt
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.,
Ewan. R. Maddrell
Affiliation:
National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG, U.K.
Get access

Abstract

Hot Isostatic Pressing of Cs-exchanged IONSIV IE-911 samples is shown to produce a mixture of ceramic phases, the nature and mass fractions of these have been determined by Rietveld analysis of powder X-ray diffraction data. The main Cs phase that forms is Cs2TiNb6O18, after this reaches approximately 30% of the total crystalline content the remaining Cs is partitioned into Cs2ZrSi6O15. Durability tests using the PCT-B method for 7 days at 90 °C with deionised water lead to Cs leach rates of 0.032 and 0.038 g∙m−2∙day−1 for samples exchanged to 6 and 12 wt% Cs, respectively, indicating a durable wasteform is produced.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tranter, T.J., Tillotson, R.D. and Todd, T.A., Separ. Sci.Tech. 40, 157 (2005).CrossRefGoogle Scholar
Bostick, D.T., DePaoli, S.M. and Guo, B., Separ. Sci. Tech. 36, 975 (2001).CrossRefGoogle Scholar
Mann, N.R. and Todd, T.A., Separation Sci. Tech. 39, 2351 (2004).CrossRefGoogle Scholar
Anthony, R.G., Dosch, R.G., Gu, D. and Philip, C.V., Ind. Eng. Chem. Res. 33, 2702 (1994).CrossRefGoogle Scholar
Su, Y.L., Balmer, M.L. and Bunker, B.C., Scientific Basis for Nuclear Waste Management XX 465, 457 (1997).Google Scholar
Li, H., Zhang, Y., McGlinn, P.J., Moricca, S., Begg, B.D. and Vance, E.R., J. Nucl. Materials 355, 136 (2006).CrossRefGoogle Scholar
Zhang, Y., Li, H. and Moricca, S., J. of Nucl. Materials 377, 470 (2008).CrossRefGoogle Scholar
Carter, M.L., Gillen, A.L., Olufson, K. and Vance, E.R., J. Am. Ceram. Soc. 92, 1112 (2009).CrossRefGoogle Scholar
Vance, E.R., Perera, D.S., Moricca, S., Aly, Z. and Begg, B.D., J. Nucl. Mater. 341, 93 (2005).CrossRefGoogle Scholar
Raman, S.V., J. Mater. Sci. 33, 1887 (1998).CrossRefGoogle Scholar
Harker, A.B., Morgan, P.E.D. and Flintoff, J.F., J. Amer. Ceram. Soc. 67, C26 (1984).CrossRefGoogle Scholar
Atkinson, H.V. and Rickinson, B.A., eds., Hot Isostatic Processing, Adam Hilger, Bristol, 1991.Google Scholar
Larson, A.C. and von Dreele, R.B., GSAS program, Los Alamos National Lab. 523, 1994.Google Scholar
Okrusch, M., Hock, R., Schussler, U., Brummer, A., Baier, M. and Theisinger, H., Am. Mineral. 88, 986 (2003).CrossRefGoogle Scholar
Torres, F.J., Tena, M.A. and Alarcon, J., J. Eur. Ceram. Soc. 22, 1991 (2002).CrossRefGoogle Scholar
Hewat, A.W., Ferroelectrics 7, 83 (1974).CrossRefGoogle Scholar
Troitzsch, U., Christy, A.G. and Ellis, D.J., Phys. Chem. Mineral. 32, 504 (2005).CrossRefGoogle Scholar
Kihara, K., Eur. J. Mineral. 2, 63 (1990).CrossRefGoogle Scholar
Desgardin, G., Robert, C. and Raveau, B., Mater. Res. Bull. 13, 621 (1978).CrossRefGoogle Scholar
Jolicart, G., Leblanc, M., Morel, B., Dehaudt, P. and Dubois, S., Eur. J. Sol. State Inorg. Chem. 33, 647 (1996).Google Scholar
ASTM International, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT), 2002.Google Scholar