Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T07:26:02.581Z Has data issue: false hasContentIssue false

Thermal conductivity of regularly spaced amorphous/crystalline silicon superlattices. A molecular dynamics study

Published online by Cambridge University Press:  29 May 2013

Konstantinos TERMENTZIDIS*
Affiliation:
Université de Lorraine, LEMTA, CNRS UMR 7563, BP 70239, Vandoeuvre les Nancy cedex, France
Arthur FRANCE-LANORD
Affiliation:
Université de Lorraine, LEMTA, CNRS UMR 7563, BP 70239, Vandoeuvre les Nancy cedex, France
Etienne BLANDRE
Affiliation:
Université de Lorraine, LEMTA, CNRS UMR 7563, BP 70239, Vandoeuvre les Nancy cedex, France
Tristan ALBARET
Affiliation:
Université de Lyon-1, ILM, CNRS UMR 5306, Bâtiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, France.
Samy MERABIA
Affiliation:
Université de Lyon-1, ILM, CNRS UMR 5306, Bâtiment Kastler, 10 rue Ada Byron, 69622 Villeurbanne, France.
Valentin JEAN
Affiliation:
Université de Lorraine, LEMTA, CNRS UMR 7563, BP 70239, Vandoeuvre les Nancy cedex, France
David LACROIX
Affiliation:
Université de Lorraine, LEMTA, CNRS UMR 7563, BP 70239, Vandoeuvre les Nancy cedex, France
*
*corresponding author: "[email protected]"
Get access

Abstract

The thermal transport in amorphous/crystalline silicon superlattices with means of molecular dynamics is presented in the current study. The procedure used to build such structures is discussed. Then, thermal conductivity of various samples is studied as a function of the periodicity of regular superlattices and of the applied temperature. Preliminarily results show that for regular amorphous/crystalline superlattices, the amorphous regions control the heat transfer within the structures. Secondly, in the studied cases thermal conductivity weakly varies with the temperature. This, points out the presence of a majority of non-propagating vibrational modes in such systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fathauer, R.W., “New class of Si‐based superlattices: Alternating layers of crystalline Si and porous amorphous Si1−x Ge x alloys”, Appl. Phys. Lett. 61, 2350 (1992).CrossRefGoogle Scholar
Ohra, H., Huang, R. and Ikuhara, Y., “Large enhancement of the thermoelectric Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers”, Phys. Status Solidi (RRL) 2, 105(2008).Google Scholar
Agarwal, S.C., “Amorphous silicon-based superlattices ”, Bull. Mater. Sci. 14, 1257 (1991).CrossRefGoogle Scholar
Von Alfthan, S., Juronen, A., and Kaski, K., Mat. Res. Soc. Symp. Proc. 703, 6.2.1 (2002).Google Scholar
Donadio, D. and Galli, G., “Temperature dependence of the thermal conductivity of thin silicon nanowiresNano Lett. 10, 847 (2010)CrossRefGoogle ScholarPubMed
Fusco, C., Albaret, T. and Tanguy, A., Physical Review E 82, 066116 (2010)CrossRefGoogle Scholar
Plimpton, S. J., Pollock, R., and Stevens, M., in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing (SIAM, Minneapolis, Minnesota, 1997).Google Scholar
Termentzidis, K., Chantrenne, P., and Keblinski, P., Phys. Rev. B 79, 214307 (2009).CrossRefGoogle Scholar
Termentzidis, K., Merabia, S., Chantrenne, P., and Keblinski, P., Int. J. Heat Mass Transf. 54, 2014 (2011).CrossRefGoogle Scholar
Schelling, P. K., Phillpot, S. R., and Keblinski, P., Phys. Rev. B 65, 144306 (2002).CrossRefGoogle Scholar