Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:25:09.874Z Has data issue: false hasContentIssue false

Thermal Bubble Nucleation in Nanochannels: Simulations and Strategies for Nanobubble Nucleation and Sensing

Published online by Cambridge University Press:  01 February 2011

Manoj Sridhar
Affiliation:
[email protected], Vanderbilt University, Physics and Astronomy, Nashville, Tennessee, United States
Dongyan Xu
Affiliation:
[email protected], Vanderbilt University, Mechanical Engineering, Nashville, Tennessee, United States
Anthony B. Hmelo
Affiliation:
[email protected], Vanderbilt University, Physics and Astronomy, Nashville, Tennessee, United States
Deyu Li
Affiliation:
[email protected], Vanderbilt University, Mechanical Engineering, Nashville, Tennessee, United States
Leonard C. Feldman
Affiliation:
[email protected], Rutgers University, Institute of Advanced Materials, Devices and Nanotechnology, New Brunswick, New Jersey, United States
Get access

Abstract

Progress in the state of the art of nanofabrication now allows devices that may enable the experimental sensing of bubble nucleation in nanochannels, and the direct measurement of the bubble nucleation rate in nanoconfined water and other fluids. In this paper we report on two aspects in achieving this goal: 1) new molecular dynamics simulations of nanobubble formation in nanoconfined argon and water model systems and 2) an ultrasensitive nanofluidic device architecture potentially able to detect individual nanobubble nucleation events.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smeets, R. M. M., Keyser, U. F., Wu, M. Y., Dekker, N. H., Dekker, C., Phys. Rev. Lett. 97, 088101 (2006).Google Scholar
2. Kinjo, T., Ohguchi, K., Yasuoka, K., Matsumoto, M., Comp. Mat. Sci. 14, 138 (1999).Google Scholar
3. Kinjo, T., Gao, G. T., Zeng, X.C., Prog. Theor Phys. Suppl. 138, 732 (2000).Google Scholar
4. Maruyama, S., Kimura, T., Int J Heat Technol 8, 69 (2000).Google Scholar
5. Park, S., Weng, J. G., Tien, C. L., Microscale Thermophys Eng 4, 161 (2000).Google Scholar
6. Wu, Y. W., Pan, C., Microscale Thermophys Eng 7, 137 (2003).Google Scholar
7. Nagayama, G., Tsuruta, T., Cheng, P., Int J Heat Mass Tran 49, 4437 (2006).Google Scholar
8. Sridhar, M., Xu, D., Hmelo, A.B., Li, D., Feldman, L. C., in preparation (2009).Google Scholar
9. Kinjo, T., Matsumoto, M., Phase Equil. 144, 343 (1998).Google Scholar
10. Xu, D., Kang, Y., Sridhar, M., Hmelo, A. B., Feldman, L. C., Li, D., Li, D., Appl. Phys. Lett. 91, 013901 (2007).Google Scholar
11. Sridhar, M., Xu, D., Kang, Y., Hmelo, A. B., Feldman, L. C., Li, D., Li, D., J. Appl. Phys. 103, 104701 (2008).Google Scholar
12. DeBlois, R. W., Bean, C.P., Rev. Sci. Instrum. 41, 909 (1970).Google Scholar