No CrossRef data available.
Article contents
Thermal and viscoelastic behaviors of nanotube-reinforced polyethylene composite
Published online by Cambridge University Press: 28 January 2011
Abstract
The effect of processing (shear) time on the mechanical behavior and thermal stability of multiwalled nanotube reinforced polyethylene was investigated. It was observed that the mechanical property (storage modulus, loss modulus) of the composites is process dependant whereas the thermal stability does not. The increase in mechanical behavior is attributed to a stronger interface between the nanotube and the polymer matrix.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
1.
Blond, D., Barron, V., Ruether, M., Ryan, K. P., Nicolosi, V., Blau, W. J., and Coleman, J. N., Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-Based Composites by the Incorporation of Poly(methyl methacrylate)-Functionalized Nanotubes, Adv. Adv. Funct. Mater. 16, 1608–1614 (2006).Google Scholar
2.
Lozano, K., Yang, S. and Jones, R. E., Nanofiber toughened polyethylene composites, Carbon
42, 2329–2331 (2004).Google Scholar
3.
Yang, B., Shi, J., Pramoda, K. P. and Goh, S. H., Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes, Nanotechnology
18, 125606–125612 (2007).Google Scholar
4.
Thompson, R. B., Rasmussen, K. Ø., and Lookman, T., Origins of Elastic Properties in Ordered Block Copolymer/Nanoparticle Composites, Nano Lett., 4, 2455–2459 (2004).Google Scholar
5.
Dressaulhaus, M. S. and Dai, H., Carbon nanotubes: continued innovations and challenges, MRSbulletin/April 2004, 237–244.Google Scholar
6.
Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M.. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature
381, 678–680 (1996).Google Scholar
7.
Coleman, J. N., Khan, U., Blau, W. J. and Gun’ko, Y. K., Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, carbon 44
, 1624–1652 (2006).Google Scholar
8.
Gorga, R. E. and Cohen, R. E., Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes, J. Polym. Sci., Part B: Polym. Phys.
42, 2690–2702 (2004).Google Scholar
9.
Haggenmueller, R., Gommans, H. H., Rinzler, A. G., and Fischer, J. E., Aligned single-wall carbon nanotubes in composites by melt processing methods, K. I.Winey, Chem. Phys. Lett.
330, 219–225 (2000).Google Scholar
10.
Chipara, M. D., Lozano, K., Hernandez, A., and Chipara, M.. TGA analysis of polypropylene-carbon nanofibers composites. Polym. Degrad. Stab. 93, 871–876 (2008).Google Scholar
11.
John, B., Varughese, K. T., Oommen, Z., Potschke, P., and Thomas, S., Dynamic Mechanical Behavior of High-Density Polyethylene/Ethylene Vinyl Acetate Copolymer Blends: The Effects of the Blend Ratio, Reactive Compatibilization, and Dynamic Vulcanization, J. Appl. Polym. Sci.
87, 2083–2099 (2003).Google Scholar